Please use this identifier to cite or link to this item: https://doi.org/10.1007/BF02626093
DC FieldValue
dc.titleConstructing optimal ultrametrics
dc.contributor.authorSriram, N.
dc.contributor.authorLewis, S.
dc.date.accessioned2014-04-14T06:35:12Z
dc.date.available2014-04-14T06:35:12Z
dc.date.issued1993-12
dc.identifier.citationSriram, N., Lewis, S. (1993-12). Constructing optimal ultrametrics. Journal of Classification 10 (2) : 241-268. ScholarBank@NUS Repository. https://doi.org/10.1007/BF02626093
dc.identifier.issn01764268
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/50234
dc.description.abstractClique optimization (CLOPT) is a family of graph clustering procedures that construct parsimonious ultrametrics by executing a sequence of divisive and agglomerative operations. Every CLOPT procedure is associated with a distinct graph-partitioning heuristic. Seven HCS methods, a mathematical programming algorithm, and two CLOPT heuristics were evaluated on simulated data. These data were obtained by distorting ultrametric partitions and hierarchies. In general, internally optimal models yielded externally optimal models. By recovering near-optimal solutions more consistently, CLOPT2 emerged as the most robust technique. © 1993 Springer-Verlag New York Inc.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/BF02626093
dc.sourceScopus
dc.subjectClustering
dc.subjectGraph
dc.subjectHeuristic
dc.subjectHierarchical
dc.subjectSimulation
dc.typeArticle
dc.contributor.departmentSOCIAL WORK & PSYCHOLOGY
dc.description.doi10.1007/BF02626093
dc.description.sourcetitleJournal of Classification
dc.description.volume10
dc.description.issue2
dc.description.page241-268
dc.identifier.isiutA1993ME50300004
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.