Please use this identifier to cite or link to this item:
Title: Detecting process non-randomness through a fast and cumulative learning ART-based pattern recognizer
Authors: Hwarng, H.B. 
Chong, C.W.
Issue Date: 1995
Citation: Hwarng, H.B.,Chong, C.W. (1995). Detecting process non-randomness through a fast and cumulative learning ART-based pattern recognizer. International Journal of Production Research 33 (7) : 1817-1833. ScholarBank@NUS Repository.
Abstract: An adaptive resonance theory (ART) based, general-purpose control chart pattern recognizer (CCPR) which is capable of fast and cumulative learning is presented. The implementation of this ART-based CCPR was made possible by introducing two key alternatives, that is, incorporating a synthesis layer in addition to the existing two-layer architecture and adopting a quasi-supervised training strategy. A detailed algorithm with the training and the testing modes was presented. Extensive simulations and performance evaluations were conducted and proved that this ART-based CCPR indeed possesses the capability of fast and cumulative learning. When compared with a back-propagation pattern recognizer (BPPR), the ART-based CCPR is superior on cyclic patterns, inferior on mixture patterns, and comparable on other patterns. Furthermore, an ART-based CCPR is easier to develop since it needs fewer training templates and takes less time to learn. This study not only provides a basis for understanding the capabilities of ART-based neural networks on control chart pattern recognition but re-confirms the applicability of the neural network approach.
Source Title: International Journal of Production Research
ISSN: 00207543
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on Jul 9, 2021

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.