Please use this identifier to cite or link to this item: https://doi.org/10.1007/s10898-011-9662-9
DC FieldValue
dc.titleMinimum recession-compatible subsets of closed convex sets
dc.contributor.authorHe, Y.
dc.contributor.authorSun, J.
dc.date.accessioned2013-10-09T03:28:33Z
dc.date.available2013-10-09T03:28:33Z
dc.date.issued2012
dc.identifier.citationHe, Y., Sun, J. (2012). Minimum recession-compatible subsets of closed convex sets. Journal of Global Optimization 52 (2) : 253-263. ScholarBank@NUS Repository. https://doi.org/10.1007/s10898-011-9662-9
dc.identifier.issn09255001
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/44167
dc.description.abstractA subset B of a closed convex set A is recession-compatible with respect to A if A can be expressed as the Minkowski sum of B and the recession cone of A. We show that if A contains no line, then there exists a recession-compatible subset of A that is minimal with respect to set inclusion. The proof only uses basic facts of convex analysis and does not depend on Zorn's Lemma. An application of this result to the error bound theory in optimization is presented. © 2011 Springer Science+Business Media, LLC.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/s10898-011-9662-9
dc.sourceScopus
dc.subjectError bound
dc.subjectRecession cone
dc.subjectRecession-compatible subset
dc.typeConference Paper
dc.contributor.departmentDECISION SCIENCES
dc.description.doi10.1007/s10898-011-9662-9
dc.description.sourcetitleJournal of Global Optimization
dc.description.volume52
dc.description.issue2
dc.description.page253-263
dc.description.codenJGOPE
dc.identifier.isiut000301799600006
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.