Please use this identifier to cite or link to this item: https://doi.org/10.1145/1873951.1874139
DC FieldValue
dc.titleOne person labels one million images
dc.contributor.authorTang, J.
dc.contributor.authorChen, Q.
dc.contributor.authorYan, S.
dc.contributor.authorChua, T.-S.
dc.contributor.authorJain, R.
dc.date.accessioned2013-07-23T09:29:28Z
dc.date.available2013-07-23T09:29:28Z
dc.date.issued2010
dc.identifier.citationTang, J.,Chen, Q.,Yan, S.,Chua, T.-S.,Jain, R. (2010). One person labels one million images. MM'10 - Proceedings of the ACM Multimedia 2010 International Conference : 1019-1022. ScholarBank@NUS Repository. <a href="https://doi.org/10.1145/1873951.1874139" target="_blank">https://doi.org/10.1145/1873951.1874139</a>
dc.identifier.isbn9781605589336
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/43266
dc.description.abstractTargeting the same objective of alleviating the manual work as automatic annotation, in this paper, we propose a novel framework with minimal human effort to manually annotate a large-scale image corpus. In this framework, a dynamic multi-scale cluster labeling strategy is proposed to manually label the clusters of similar image regions. The users label the multi-scale clusters of regions instead of individual images, thus each labeling operation can annotate hundreds or even thousands of images simultaneously with much reduced manual work. Meanwhile the manual labeling guarantees the accuracy of the labels. Compared to automatic annotation, the proposed framework is more flexible, general and effective, especially for annotating those labels with large semantic gaps. Experiments on NUS-WIDE dataset demonstrate that the proposed fast manual annotation framework is much more effective than automatic annotation and comparatively efficient. © 2010 ACM.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1145/1873951.1874139
dc.sourceScopus
dc.subjectimage
dc.subjectlarge-scale
dc.subjectmanual annotation
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.contributor.departmentELECTRICAL & COMPUTER ENGINEERING
dc.description.doi10.1145/1873951.1874139
dc.description.sourcetitleMM'10 - Proceedings of the ACM Multimedia 2010 International Conference
dc.description.page1019-1022
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.