Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-29952-0_41
DC FieldValue
dc.titleOn the amount of nonconstructivity in learning formal languages from positive data
dc.contributor.authorJain, S.
dc.contributor.authorStephan, F.
dc.contributor.authorZeugmann, T.
dc.date.accessioned2013-07-23T09:29:04Z
dc.date.available2013-07-23T09:29:04Z
dc.date.issued2012
dc.identifier.citationJain, S.,Stephan, F.,Zeugmann, T. (2012). On the amount of nonconstructivity in learning formal languages from positive data. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 7287 LNCS : 423-434. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/978-3-642-29952-0_41" target="_blank">https://doi.org/10.1007/978-3-642-29952-0_41</a>
dc.identifier.isbn9783642299513
dc.identifier.issn03029743
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/43252
dc.description.abstractNonconstructive computations by various types of machines and automata have been considered by e.g., Karp and Lipton [18] and Freivalds [9, 10]. They allow to regard more complicated algorithms from the viewpoint of more primitive computational devices. The amount of nonconstructivity is a quantitative characterization of the distance between types of computational devices with respect to solving a specific problem. This paper studies the amount of nonconstructivity needed to learn classes of formal languages from positive data. Different learning types are compared with respect to the amount of nonconstructivity needed to learn indexable classes and recursively enumerable classes, respectively, of formal languages from positive data. Matching upper and lower bounds for the amount of nonconstructivity needed are shown. © 2012 Springer-Verlag.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/978-3-642-29952-0_41
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1007/978-3-642-29952-0_41
dc.description.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.description.volume7287 LNCS
dc.description.page423-434
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.