Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/43195
Title: Employing Discrete Bayes Error rate for discretization and feature selection tasks
Authors: Mittal, A. 
Cheong, L.-F. 
Issue Date: 2002
Citation: Mittal, A., Cheong, L.-F. (2002). Employing Discrete Bayes Error rate for discretization and feature selection tasks. Proceedings - IEEE International Conference on Data Mining, ICDM : 298-305. ScholarBank@NUS Repository.
Abstract: The tasks of discretization and feature selection are frequently used to improve classification accuracy. In this paper, we use discrete approximation of Bayes error rate to perform discretization on the features. The discretization procedure targets minimization of Bayes error rate within each partition. A class-pair discriminatory measure can be defined on discretized partitions which forms the basis of feature selection algorithm. Small value of this measure for a class-pair indicates that the class-pair in consideration is confusing and the features which distinguish them well should be chosen first. A video classification problem on a large database is considered for showing the comparison of a classifier using our discretization and feature selection tasks with SVM, Neural network classifier, decision trees and K-Nearest neighbor classifier. © 2002 IEEE.
Source Title: Proceedings - IEEE International Conference on Data Mining, ICDM
URI: http://scholarbank.nus.edu.sg/handle/10635/43195
ISBN: 0769517544
ISSN: 15504786
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.