Please use this identifier to cite or link to this item: https://doi.org/10.1109/ICMLA.2011.31
DC FieldValue
dc.titleAn experimental study to investigate the use of additional classifiers to improve information extraction accuracy
dc.contributor.authorLek, H.H.
dc.contributor.authorPoo, D.C.C.
dc.date.accessioned2013-07-11T10:17:46Z
dc.date.available2013-07-11T10:17:46Z
dc.date.issued2011
dc.identifier.citationLek, H.H.,Poo, D.C.C. (2011). An experimental study to investigate the use of additional classifiers to improve information extraction accuracy. Proceedings - 10th International Conference on Machine Learning and Applications, ICMLA 2011 1 : 412-415. ScholarBank@NUS Repository. <a href="https://doi.org/10.1109/ICMLA.2011.31" target="_blank">https://doi.org/10.1109/ICMLA.2011.31</a>
dc.identifier.isbn9780769546070
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/42775
dc.description.abstractIn this paper, we present an information extraction system and investigate the use of additional classifiers to help improve information extraction performance. We propose a simple idea of training an additional classifier using the same feature configurations on another corpus and then using this new classifier to classify the original dataset. The classification result of this new classifier is then used as a feature to the original classifier. We tested this approach on the CMU seminar announcements and the Austin job posting datasets and obtained results better than all previously reported systems. © 2011 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/ICMLA.2011.31
dc.sourceScopus
dc.subjectinformation extraction
dc.subjectmaximum entropy
dc.subjectnatural-language processing
dc.typeConference Paper
dc.contributor.departmentINFORMATION SYSTEMS
dc.description.doi10.1109/ICMLA.2011.31
dc.description.sourcetitleProceedings - 10th International Conference on Machine Learning and Applications, ICMLA 2011
dc.description.volume1
dc.description.page412-415
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.