Please use this identifier to cite or link to this item:
Title: Domain adaptation from multiple sources via auxiliary classifiers
Authors: Duan, L.
Tsang, I.W.
Xu, D.
Chua, T.-S. 
Issue Date: 2009
Citation: Duan, L.,Tsang, I.W.,Xu, D.,Chua, T.-S. (2009). Domain adaptation from multiple sources via auxiliary classifiers. Proceedings of the 26th International Conference On Machine Learning, ICML 2009 : 289-296. ScholarBank@NUS Repository.
Abstract: We propose a multiple source domain adaptation method, referred to as Domain Adaptation Machine (DAM), to learn a robust decision function (referred to as target classifier) for label prediction of patterns from the target domain by leveraging a set of pre-computed classifiers (referred to as auxiliary/source classifiers) independently learned with the labeled patterns from multiple source domains. We introduce a new data-dependent regularizer based on smoothness assumption into Least-Squares SVM (LS-SVM), which enforces that the target classifier shares similar decision values with the auxiliary classifiers from relevant source domains on the unlabeled patterns of the target domain. In addition, we employ a sparsity regularizer to learn a sparse target classifier. Comprehensive experiments on the challenging TRECVID 2005 corpus demonstrate that DAM outperforms the existing multiple source domain adaptation methods for video concept detection in terms of effectiveness and efficiency.
Source Title: Proceedings of the 26th International Conference On Machine Learning, ICML 2009
ISBN: 9781605585161
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Page view(s)

checked on Apr 19, 2019

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.