Please use this identifier to cite or link to this item: https://doi.org/10.1145/1553374.1553411
DC FieldValue
dc.titleDomain adaptation from multiple sources via auxiliary classifiers
dc.contributor.authorDuan, L.
dc.contributor.authorTsang, I.W.
dc.contributor.authorXu, D.
dc.contributor.authorChua, T.-S.
dc.date.accessioned2013-07-04T08:46:21Z
dc.date.available2013-07-04T08:46:21Z
dc.date.issued2009
dc.identifier.citationDuan, L.,Tsang, I.W.,Xu, D.,Chua, T.-S. (2009). Domain adaptation from multiple sources via auxiliary classifiers. ACM International Conference Proceeding Series 382. ScholarBank@NUS Repository. <a href="https://doi.org/10.1145/1553374.1553411" target="_blank">https://doi.org/10.1145/1553374.1553411</a>
dc.identifier.isbn9781605585161
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/42220
dc.description.abstractWe propose a multiple source domain adaptation method, referred to as Domain Adaptation Machine (DAM), to learn a robust decision function (referred to as target classifier) for label prediction of patterns from the target domain by leveraging a set of pre-computed classifiers (referred to as auxiliary/source classifiers) independently learned with the labeled patterns from multiple source domains. We introduce a new datadependent regularizer based on smoothness assumption into Least-Squares SVM (LS-SVM), which enforces that the target classifier shares similar decision values with the auxiliary classifiersfrom relevant source domains on the unlabeled patterns of the target domain. In addition, we employ a sparsity regularizer to learn a sparse target classifier. Comprehensive experiments on the challenging TRECVID 2005 corpus demonstrate that DAM outperforms the existing multiple source domain adaptation methods for video concept detection in terms of effectiveness and fficiency. Copyright 2009.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1145/1553374.1553411
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1145/1553374.1553411
dc.description.sourcetitleACM International Conference Proceeding Series
dc.description.volume382
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.