Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-20149-3_41
DC FieldValue
dc.titleGenerating random graphic sequences
dc.contributor.authorLu, X.
dc.contributor.authorBressan, S.
dc.date.accessioned2013-07-04T08:34:43Z
dc.date.available2013-07-04T08:34:43Z
dc.date.issued2011
dc.identifier.citationLu, X.,Bressan, S. (2011). Generating random graphic sequences. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6587 LNCS (PART 1) : 570-579. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/978-3-642-20149-3_41" target="_blank">https://doi.org/10.1007/978-3-642-20149-3_41</a>
dc.identifier.isbn9783642201486
dc.identifier.issn03029743
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/41743
dc.description.abstractThe graphs that arise from concrete applications seem to correspond to models with prescribed degree sequences. We present two algorithms for the uniform random generation of graphic sequences. We prove their correctness. We empirically evaluate their performance. To our knowledge these algorithms are the first non trivial algorithms proposed for this task. The algorithms that we propose are Markov chain Monte Carlo algorithms. Our contribution is the original design of the Markov chain and the empirical evaluation of mixing time. © 2011 Springer-Verlag.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/978-3-642-20149-3_41
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1007/978-3-642-20149-3_41
dc.description.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.description.volume6587 LNCS
dc.description.issuePART 1
dc.description.page570-579
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.