Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-21090-7_11
DC FieldValue
dc.titleNomogram visualization for ranking support vector machine
dc.contributor.authorThuy, N.T.T.
dc.contributor.authorVinh, N.T.N.
dc.contributor.authorVien, N.A.
dc.date.accessioned2013-07-04T08:31:04Z
dc.date.available2013-07-04T08:31:04Z
dc.date.issued2011
dc.identifier.citationThuy, N.T.T.,Vinh, N.T.N.,Vien, N.A. (2011). Nomogram visualization for ranking support vector machine. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6676 LNCS (PART 2) : 94-102. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/978-3-642-21090-7_11" target="_blank">https://doi.org/10.1007/978-3-642-21090-7_11</a>
dc.identifier.isbn9783642210891
dc.identifier.issn03029743
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/41589
dc.description.abstractIn this paper, we propose a visualization model for a trained ranking support vector machine. In addition, we also introduce a feature selection method for the ranking support vector machine, and show visually each feature's effect. Nomogram is a well-known visualization model that graphically describes completely the model on a single graph. The complexity of the visualization does not depend on the number of the features but on the properties of the kernel. In order to represent the effect of each feature on the log odds ratio on the nomograms, we use probabilistic ranking support vector machines which map the support vector machine outputs into a probabilistic sigmoid function whose parameters are trained by using cross-validation. The experiments show the effectiveness of our proposal which helps the analysts study the effects of predictive features. © 2011 Springer-Verlag.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/978-3-642-21090-7_11
dc.sourceScopus
dc.subjectNomogram
dc.subjectprobabilistic ranking SVM
dc.subjectranking SVM
dc.subjectSVM
dc.subjectvisualization
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1007/978-3-642-21090-7_11
dc.description.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.description.volume6676 LNCS
dc.description.issuePART 2
dc.description.page94-102
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.