Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-540-78568-2_45
DC FieldValue
dc.titleTwig'n join: Progressive query processing of multiple XML streams
dc.contributor.authorTok, W.H.
dc.contributor.authorBressan, S.
dc.contributor.authorLee, M.-L.
dc.date.accessioned2013-07-04T08:30:36Z
dc.date.available2013-07-04T08:30:36Z
dc.date.issued2008
dc.identifier.citationTok, W.H.,Bressan, S.,Lee, M.-L. (2008). Twig'n join: Progressive query processing of multiple XML streams. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4947 LNCS : 546-553. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/978-3-540-78568-2_45" target="_blank">https://doi.org/10.1007/978-3-540-78568-2_45</a>
dc.identifier.isbn3540785671
dc.identifier.issn03029743
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/41569
dc.description.abstractWe propose a practical approach to the progressive processing of (FWR) XQuery queries on multiple XML streams, called Twig'n Join (or TnJ). The query is decomposed into a query plan combining several twig queries on the individual streams, followed by a multi-way join and a final twig query. The processing is itself accordingly decomposed into three pipelined stages progressively producing streams of XML fragments. Twig'n Join combines the advantages of the recently proposed TwigM algorithm and our previous work on relational result-rate based progressive joins. In addition, we introduce a novel dynamic probing technique, called Result-Oriented Probing (ROP), which determines an optimal probing sequence for the multi-way join. This significantly reduces the amount of redundant probing for results. We comparatively evaluate the performance of Twig'n Join using both synthetic and real-life data from standard XML query processing benchmarks. We show that Twig'n Join is indeed effective and efficient for processing multiple XML streams. © 2008 Springer-Verlag Berlin Heidelberg.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/978-3-540-78568-2_45
dc.sourceScopus
dc.subjectProgressive join
dc.subjectXML
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1007/978-3-540-78568-2_45
dc.description.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.description.volume4947 LNCS
dc.description.page546-553
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

SCOPUSTM   
Citations

2
checked on Jan 13, 2022

Page view(s)

131
checked on Jan 13, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.