Please use this identifier to cite or link to this item: https://scholarbank.nus.edu.sg/handle/10635/41340
Title: Aspect ranking: Identifying important product aspects from online consumer reviews
Authors: Yu, J.
Zha, Z.-J. 
Wang, M. 
Chua, T.-S. 
Issue Date: 2011
Citation: Yu, J.,Zha, Z.-J.,Wang, M.,Chua, T.-S. (2011). Aspect ranking: Identifying important product aspects from online consumer reviews. ACL-HLT 2011 - Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies 1 : 1496-1505. ScholarBank@NUS Repository.
Abstract: In this paper, we dedicate to the topic of aspect ranking, which aims to automatically identify important product aspects from online consumer reviews. The important aspects are identified according to two observations: (a) the important aspects of a product are usually commented by a large number of consumers; and (b) consumers' opinions on the important aspects greatly influence their overall opinions on the product. In particular, given consumer reviews of a product, we first identify the product aspects by a shallow dependency parser and determine consumers' opinions on these aspects via a sentiment classifier. We then develop an aspect ranking algorithm to identify the important aspects by simultaneously considering the aspect frequency and the influence of consumers' opinions given to each aspect on their overall opinions. The experimental results on 11 popular products in four domains demonstrate the effectiveness of our approach. We further apply the aspect ranking results to the application of documentlevel sentiment classification, and improve the performance significantly. © 2011 Association for Computational Linguistics.
Source Title: ACL-HLT 2011 - Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies
URI: http://scholarbank.nus.edu.sg/handle/10635/41340
ISBN: 9781932432879
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.