Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-30973-1_9
DC FieldValue
dc.titleA mean-variance based index for dynamic context data lookup
dc.contributor.authorSen, S.
dc.contributor.authorPung, H.K.
dc.date.accessioned2013-07-04T08:23:29Z
dc.date.available2013-07-04T08:23:29Z
dc.date.issued2012
dc.identifier.citationSen, S.,Pung, H.K. (2012). A mean-variance based index for dynamic context data lookup. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 104 LNICST : 101-112. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/978-3-642-30973-1_9" target="_blank">https://doi.org/10.1007/978-3-642-30973-1_9</a>
dc.identifier.isbn9783642309724
dc.identifier.issn18678211
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/41266
dc.description.abstractprimary functionality of context aware applications is the retrieval of different types of context data from various context sources and adapting their behavior accordingly. In order to facilitate context aware application development, a context aware middleware must provide an effective context data management and lookup strategy. The use of a traditional index for indexing dynamic context data is not feasible due to the high update overhead. In this paper, we propose a context data indexing mechanism that utilizes the statistical properties of data viz. the mean and variance to cluster similar data values together and minimizes the need for frequent index updates. Experimental results indicate that the performance of the proposed index structure is satisfactory with respect to the query response time and query accuracy together with a low maintenance overhead. © 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/978-3-642-30973-1_9
dc.sourceScopus
dc.subjectContext data management
dc.subjectContext Lookup
dc.subjectContext-awareness
dc.subjectDynamic data
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1007/978-3-642-30973-1_9
dc.description.sourcetitleLecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering
dc.description.volume104 LNICST
dc.description.page101-112
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.