Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/41069
DC Field | Value | |
---|---|---|
dc.title | Adaptive compiler directed prefetching for EPIC processors | |
dc.contributor.author | Kim, J. | |
dc.contributor.author | Rabbah, R.M. | |
dc.contributor.author | Palem, K.V. | |
dc.contributor.author | Wong, W.-F. | |
dc.date.accessioned | 2013-07-04T08:18:54Z | |
dc.date.available | 2013-07-04T08:18:54Z | |
dc.date.issued | 2004 | |
dc.identifier.citation | Kim, J.,Rabbah, R.M.,Palem, K.V.,Wong, W.-F. (2004). Adaptive compiler directed prefetching for EPIC processors. Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications, PDPTA'04 1 : 495-501. ScholarBank@NUS Repository. | |
dc.identifier.isbn | 1932415262 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/41069 | |
dc.description.abstract | The widely acknowledged performance gap between processors and memory has been the subject of much research. In the Explicitly Parallel Instruction Computing (EPIC) paradigm, the combination of in-order issue and the presence of a large number of parallel functional units exacerbate the problem. Prefetching, by hardware, software, or a combination of both, is one of the primary mechanisms advocated to alleviate this problem. In this paper, we propose a new mechanism readily suitable for implementation in EPIC processors. Specifically, we introduce a predicated prefetch operation which leverages the concept of an informing load to dynamically adapt to run-time memory behaviors. Furthermore, we employ predicated Prefetching in a new optimization framework, which also consists of data remapping and off-line learning of Markovian predictors. This distinguishes our approach from early software Prefetching techniques that only involve static program analysis. Our experiments show that the proposed framework can effectively remove 10%-30% of the stall cycles due to cache misses for benchmarks from the well-known SPEC and OLDEN suites. | |
dc.source | Scopus | |
dc.subject | Compiler Directed Data Prefetching | |
dc.subject | EPIC Architecture | |
dc.subject | Markovian Predictor | |
dc.subject | Memory Bottleneck | |
dc.subject | Off-line Learning | |
dc.type | Conference Paper | |
dc.contributor.department | COMPUTER SCIENCE | |
dc.description.sourcetitle | Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications, PDPTA'04 | |
dc.description.volume | 1 | |
dc.description.page | 495-501 | |
dc.identifier.isiut | NOT_IN_WOS | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.