Please use this identifier to cite or link to this item: https://doi.org/10.1109/ICTAI.2005.63
DC FieldValue
dc.titleEfficient pattern discovery for semistructured data
dc.contributor.authorFeng, Z.
dc.contributor.authorHsu, W.
dc.contributor.authorLee, M.L.
dc.date.accessioned2013-07-04T08:15:48Z
dc.date.available2013-07-04T08:15:48Z
dc.date.issued2005
dc.identifier.citationFeng, Z.,Hsu, W.,Lee, M.L. (2005). Efficient pattern discovery for semistructured data. Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI 2005 : 294-301. ScholarBank@NUS Repository. <a href="https://doi.org/10.1109/ICTAI.2005.63" target="_blank">https://doi.org/10.1109/ICTAI.2005.63</a>
dc.identifier.isbn0769524885
dc.identifier.issn10823409
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/40936
dc.description.abstractThe process of discovering frequent patterns from large semistructured data repositories is one of the hardest categories of tree mining problems, since it involves the discovery of unordered embedded tree patterns. Existing work has focused primarily on the discovery of ordered, induced trees. This work proposes a divide-and-conquer algorithm called WTIMiner to discover the complete set of frequent unordered embedded subtrees. The algorithm successfully reduces the complexity of pattern matching and counting problem that a regular tree mining algorithm faces. Experimental results demonstrate the efficiency and scalability of WTIMiner in terms of both time and space. © 2005 IEEE.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1109/ICTAI.2005.63
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1109/ICTAI.2005.63
dc.description.sourcetitleProceedings - International Conference on Tools with Artificial Intelligence, ICTAI
dc.description.volume2005
dc.description.page294-301
dc.description.codenPCTIF
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.