Please use this identifier to cite or link to this item: https://doi.org/10.1111/1539-6924.00371
DC FieldValue
dc.titleA probabilistic method for foreground and shadow segmentation
dc.contributor.authorWang, Y.
dc.contributor.authorTan, T.
dc.contributor.authorLoe, K.-F.
dc.date.accessioned2013-07-04T08:13:12Z
dc.date.available2013-07-04T08:13:12Z
dc.date.issued2003
dc.identifier.citationWang, Y., Tan, T., Loe, K.-F. (2003). A probabilistic method for foreground and shadow segmentation. IEEE International Conference on Image Processing 3 : 937-940. ScholarBank@NUS Repository. https://doi.org/10.1111/1539-6924.00371
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/40824
dc.description.abstractThis paper presents a probabilistic method for foreground segmentation that distinguishes moving objects from their cast shadows in monocular indoor image sequences. The models of background, shadow, and edge information are set up and adaptively updated. A Bayesian framework is proposed to describe the relationships among the segmentation label, background, intensity, and edge information. A Markov random field is used to boost the spatial connectivity of the segmented regions. The solution is obtained by maximizing the posterior probability density of the segmentation field.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1111/1539-6924.00371
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1111/1539-6924.00371
dc.description.sourcetitleIEEE International Conference on Image Processing
dc.description.volume3
dc.description.page937-940
dc.description.coden85QTA
dc.identifier.isiut000185701400009
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.