Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/40637
Title: | An integrated white+black box approach for designing and tuning stochastic local search | Authors: | Halim, S. Yap, R.H.C. Lau, H.C. |
Issue Date: | 2007 | Citation: | Halim, S.,Yap, R.H.C.,Lau, H.C. (2007). An integrated white+black box approach for designing and tuning stochastic local search. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4741 LNCS : 332-347. ScholarBank@NUS Repository. | Abstract: | Stochastic Local Search (SLS) is a simple and effective paradigm for attacking a variety of Combinatorial (Optimization) Problems (COP). However, it is often non-trivial to get good results from an SLS; the designer of an SLS needs to undertake a laborious and ad-hoc algorithm tuning and re-design process for a particular COP. There are two general approaches, Black-box approach treats the SLS as a black-box in tuning the SLS parameters. White-box approach takes advantage of humans to observe the SLS in the tuning and SLS re-design. In this paper, we develop an integrated white+black box approach with extensive use of visualization (white-box) and factorial design (black-box) for tuning, and more importantly, for designing arbitrary SLS algorithms. Our integrated approach combines the strengths of white-box and black-box approaches and produces better results than either alone. We demonstrate an effective tool using the integrated white+black box approach to design and tune variants of Robust Tabu Search (Ro-TS) for Quadratic Assignment Problem (QAP). © Springer-Verlag Berlin Heidelberg 2007. | Source Title: | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) | URI: | http://scholarbank.nus.edu.sg/handle/10635/40637 | ISBN: | 3540749691 | ISSN: | 03029743 |
Appears in Collections: | Staff Publications |
Show full item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.