Please use this identifier to cite or link to this item: https://doi.org/10.1007/11563983_7
DC FieldValue
dc.titleNamed Entity Recognition for the Indonesian language: Combining contextual, morphological and part-of-speech features into a knowledge engineering approach
dc.contributor.authorBudi, I.
dc.contributor.authorBressan, S.
dc.contributor.authorWahyudi, G.
dc.contributor.authorHasibuan, Z.A.
dc.contributor.authorNazief, B.A.A.
dc.date.accessioned2013-07-04T08:07:06Z
dc.date.available2013-07-04T08:07:06Z
dc.date.issued2005
dc.identifier.citationBudi, I.,Bressan, S.,Wahyudi, G.,Hasibuan, Z.A.,Nazief, B.A.A. (2005). Named Entity Recognition for the Indonesian language: Combining contextual, morphological and part-of-speech features into a knowledge engineering approach. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 3735 LNAI : 57-69. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/11563983_7" target="_blank">https://doi.org/10.1007/11563983_7</a>
dc.identifier.isbn3540292306
dc.identifier.issn03029743
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/40558
dc.description.abstractWe present a novel named entity recognition approach for the Indonesian language. We call the new method InNER for Indonesian Named Entity Recognition. InNER is based on a set of rules capturing the contextual, morphological, and part of speech knowledge necessary in the process of recognizing named entities in Indonesian texts. The InNER strategy is one of knowledge engineering: the domain and language specific rules are designed by expert knowledge engineers. After showing in our previous work that mined association rules can effectively recognize named entities and outperform maximum entropy methods, we needed to evaluate the potential for improvement to the rule based approach when expert crafted knowledge is used. The results are conclusive: the InNER method yields recall and precision of up to 63.43% and 71.84%, respectively. Thus, it significantly outperforms not only maximum entropy methods but also the association rule based method we had previously designed. © Springer-Verlag Berlin Heidelberg 2005.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/11563983_7
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1007/11563983_7
dc.description.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.description.volume3735 LNAI
dc.description.page57-69
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.