Please use this identifier to cite or link to this item: https://doi.org/10.1007/11788034_15
DC FieldValue
dc.titleVideo retrieval using high level features: Exploiting query matching and confidence-based weighting
dc.contributor.authorNeo, S.-Y.
dc.contributor.authorZhao, J.
dc.contributor.authorKan, M.-Y.
dc.contributor.authorChua, T.-S.
dc.date.accessioned2013-07-04T08:06:45Z
dc.date.available2013-07-04T08:06:45Z
dc.date.issued2006
dc.identifier.citationNeo, S.-Y.,Zhao, J.,Kan, M.-Y.,Chua, T.-S. (2006). Video retrieval using high level features: Exploiting query matching and confidence-based weighting. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 4071 LNCS : 143-152. ScholarBank@NUS Repository. <a href="https://doi.org/10.1007/11788034_15" target="_blank">https://doi.org/10.1007/11788034_15</a>
dc.identifier.isbn3540360182
dc.identifier.issn03029743
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/40543
dc.description.abstractRecent research in video retrieval has focused on automated, high-level feature indexing on shots or frames. One important application of such indexing is to support precise video retrieval. We report on extensions of this semantic indexing on news video retrieval, First, we utilize extensive query analysis to relate various high-level features and query terms by matching the textual description and context in a time-dependent manner. Second, we introduce a framework to effectively fuse the relation weights with the detectors' confidence scores. This results in individual high level features that are weighted on a per-query basis. Tests on the TRECVID 2005 dataset show that the above two enhancements yield significant improvement in performance over a corresponding state-of-the-art video retrieval baseline. © Springer-Verlag Berlin Heidelberg 2006.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1007/11788034_15
dc.sourceScopus
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1007/11788034_15
dc.description.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.description.volume4071 LNCS
dc.description.page143-152
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.