Please use this identifier to cite or link to this item: https://doi.org/10.1007/978-3-642-12026-8_26
Title: Efficient skyline maintenance for streaming data with partially-ordered domains
Authors: Fang, Y.
Chan, C.-Y. 
Issue Date: 2010
Citation: Fang, Y.,Chan, C.-Y. (2010). Efficient skyline maintenance for streaming data with partially-ordered domains. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5981 LNCS (PART 1) : 322-336. ScholarBank@NUS Repository. https://doi.org/10.1007/978-3-642-12026-8_26
Abstract: We address the problem of skyline query processing for a count-based window of continuous streaming data that involves both totally- and partially-ordered attribute domains. In this problem, a fixed-size buffer of the N most recent tuples is dynamically maintained and the key challenge is how to efficiently maintain the skyline of the sliding window of N tuples as new tuples arrive and old tuples expire. We identify the limitations of the state-of-the-art approach STARS, and propose two new approaches, STARS + and SkyGrid, to address its drawbacks. STARS + is an enhancement of STARS with three new optimization techniques, while SkyGrid is a simplification STARS that eliminates a key data structure used in STARS. While both new approaches outperform STARS significantly, the surprising result is that the best approach turns out to be the simplest approach, SkyGrid. © Springer-Verlag Berlin Heidelberg 2010.
Source Title: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
URI: http://scholarbank.nus.edu.sg/handle/10635/40483
ISBN: 3642120253
ISSN: 03029743
DOI: 10.1007/978-3-642-12026-8_26
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.