Please use this identifier to cite or link to this item: https://doi.org/10.1145/2043674.2043688
DC FieldValue
dc.titleAn online video recommendation framework using rich information
dc.contributor.authorZhao, X.
dc.contributor.authorLi, G.
dc.contributor.authorWang, M.
dc.contributor.authorLi, S.
dc.contributor.authorChen, X.
dc.contributor.authorLi, Z.
dc.date.accessioned2013-07-04T07:59:05Z
dc.date.available2013-07-04T07:59:05Z
dc.date.issued2011
dc.identifier.citationZhao, X.,Li, G.,Wang, M.,Li, S.,Chen, X.,Li, Z. (2011). An online video recommendation framework using rich information. ACM International Conference Proceeding Series : 46-49. ScholarBank@NUS Repository. <a href="https://doi.org/10.1145/2043674.2043688" target="_blank">https://doi.org/10.1145/2043674.2043688</a>
dc.identifier.isbn9781450309189
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/40208
dc.description.abstractAutomatic video recommendation is involved in an attempt to tackle the information-overload problem, aiming to present the personalized video list to the user. This paper presents a novel approach to improve the accuracy of the video recommendation by combining the content-based filtering (CBF) method and the collaborative filtering (CF) method. Multimodal information is utilized to calculate the similarity among different videos to overcome the sparseness problem by CF method. We conduct experiments on a dataset of more than 11,000 videos and the results demonstrate the feasibility and effectiveness of our approach. © 2011 ACM.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1145/2043674.2043688
dc.sourceScopus
dc.subjectmultimodal similarity
dc.subjectonline video recommendation
dc.subjectviewing history
dc.typeConference Paper
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1145/2043674.2043688
dc.description.sourcetitleACM International Conference Proceeding Series
dc.description.page46-49
dc.identifier.isiutNOT_IN_WOS
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.