Please use this identifier to cite or link to this item: https://doi.org/10.1103/PhysRevA.86.042315
DC FieldValue
dc.titleMin-entropy uncertainty relation for finite-size cryptography
dc.contributor.authorNg, N.H.Y.
dc.contributor.authorBerta, M.
dc.contributor.authorWehner, S.
dc.date.accessioned2013-07-04T07:46:48Z
dc.date.available2013-07-04T07:46:48Z
dc.date.issued2012
dc.identifier.citationNg, N.H.Y., Berta, M., Wehner, S. (2012). Min-entropy uncertainty relation for finite-size cryptography. Physical Review A - Atomic, Molecular, and Optical Physics 86 (4). ScholarBank@NUS Repository. https://doi.org/10.1103/PhysRevA.86.042315
dc.identifier.issn10502947
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/39666
dc.description.abstractApart from their foundational significance, entropic uncertainty relations play a central role in proving the security of quantum cryptographic protocols. Of particular interest are therefore relations in terms of the smooth min-entropy for Bennett-Brassard 1984 (BB84) and six-state encodings. The smooth min-entropy Hminε(X/B) quantifies the negative logarithm of the probability for an attacker B to guess X, except with a small failure probability ε. Previously, strong uncertainty relations were obtained which are valid in the limit of large block lengths. Here, we prove an alternative uncertainty relation in terms of the smooth min-entropy that is only marginally less strong but has the crucial property that it can be applied to rather small block lengths. This paves the way for a practical implementation of many cryptographic protocols. As part of our proof we show tight uncertainty relations for a family of Rényi entropies that may be of independent interest. © 2012 American Physical Society.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1103/PhysRevA.86.042315
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1103/PhysRevA.86.042315
dc.description.sourcetitlePhysical Review A - Atomic, Molecular, and Optical Physics
dc.description.volume86
dc.description.issue4
dc.description.codenPLRAA
dc.identifier.isiut000309808000007
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.