Please use this identifier to cite or link to this item:
https://scholarbank.nus.edu.sg/handle/10635/39454
DC Field | Value | |
---|---|---|
dc.title | Distributed online aggregations | |
dc.contributor.author | Wu, S. | |
dc.contributor.author | Jiang, S. | |
dc.contributor.author | Ooi, B.C. | |
dc.contributor.author | Tan, K.L. | |
dc.date.accessioned | 2013-07-04T07:41:58Z | |
dc.date.available | 2013-07-04T07:41:58Z | |
dc.date.issued | 2009 | |
dc.identifier.citation | Wu, S.,Jiang, S.,Ooi, B.C.,Tan, K.L. (2009). Distributed online aggregations. Proceedings of the VLDB Endowment 2 (1) : 443-454. ScholarBank@NUS Repository. | |
dc.identifier.issn | 21508097 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/39454 | |
dc.description.abstract | In many decision making applications, users typically issue aggregate queries. To evaluate these computationally expensive queries, online aggregation has been developed to provide approximate answers (with their respective confidence intervals) quickly, and to continuously refine the answers. In this paper, we extend the online aggregation technique to a distributed context where sites are maintained in a DHT (Distributed Hash Table) network. Our Distributed Online Aggregation (DoA) scheme iteratively and progressively produces approximate aggregate answers as follows: in each iteration, a small set of random samples are retrieved from the data sites and distributed to the processing sites; at each processing site, a local aggregate is computed based on the allocated samples; at a coordinator site, these local aggregates are combined into a global aggregate. DoA adaptively grows the number of processing nodes as the sample size increases. To further reduce the sampling overhead, the samples are retained as a precomputed synopsis over the network to be used for processing future queries. We also study how these synopsis can be maintained incrementally. We have conducted extensive experiments on PlanetLab. The results show that our DoA scheme reduces the initial waiting time significantly and provides high quality approximate answers with running confidence intervals progressively. © 2009 VLDB Endowment. | |
dc.source | Scopus | |
dc.type | Article | |
dc.contributor.department | COMPUTER SCIENCE | |
dc.description.sourcetitle | Proceedings of the VLDB Endowment | |
dc.description.volume | 2 | |
dc.description.issue | 1 | |
dc.description.page | 443-454 | |
dc.identifier.isiut | NOT_IN_WOS | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.