Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0020-0190(99)00051-4
DC FieldValue
dc.titleOn a question of nearly minimal identification of functions
dc.contributor.authorJain, S.
dc.date.accessioned2013-07-04T07:41:12Z
dc.date.available2013-07-04T07:41:12Z
dc.date.issued1999
dc.identifier.citationJain, S. (1999). On a question of nearly minimal identification of functions. Information Processing Letters 70 (3) : 113-117. ScholarBank@NUS Repository. https://doi.org/10.1016/S0020-0190(99)00051-4
dc.identifier.issn00200190
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/39419
dc.description.abstractSuppose A and B are classes of recursive functions. A is said to be an m-cover (*-cover) for B, iff for each g∈B, there exists an f∈A such that f differs from g on at most m inputs (finitely many inputs). C, a class of recursive functions, is a-immune iff C is infinite and every recursively enumerable subclass of C has a finite a-cover. C is a-isolated iff C is finite or a-immune. Chen (1981) conjectured that every class of recursive functions that is MEx* m-identifiable is *-isolated. We refute this conjecture.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0020-0190(99)00051-4
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1016/S0020-0190(99)00051-4
dc.description.sourcetitleInformation Processing Letters
dc.description.volume70
dc.description.issue3
dc.description.page113-117
dc.description.codenIFPLA
dc.identifier.isiut000081322500002
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.