Please use this identifier to cite or link to this item: https://doi.org/10.1049/el.2012.0347
DC FieldValue
dc.titleApproximate distributed clustering by learning the confidence radius on Fisher discriminant ratio
dc.contributor.authorShen, X.J.
dc.contributor.authorZha, Z.J.
dc.contributor.authorZhu, Q.
dc.contributor.authorYang, H.B.
dc.contributor.authorGu, P.Y.
dc.date.accessioned2013-07-04T07:33:00Z
dc.date.available2013-07-04T07:33:00Z
dc.date.issued2012
dc.identifier.citationShen, X.J., Zha, Z.J., Zhu, Q., Yang, H.B., Gu, P.Y. (2012). Approximate distributed clustering by learning the confidence radius on Fisher discriminant ratio. Electronics Letters 48 (14) : 839-841. ScholarBank@NUS Repository. https://doi.org/10.1049/el.2012.0347
dc.identifier.issn00135194
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/39058
dc.description.abstractPresented is a new clustering algorithm with approximate distributed clustering over a peer-to-peer (P2P) network. The Fisher discriminant ratio is used to dynamically learn the confidence radius based on the data distribution in every local peer. Experimental results show that the proposed approach can achieve better clustering accuracies than the DFEKM algorithm while preserving much lower bandwidth consumptions. © 2012 The Institution of Engineering and Technology.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1049/el.2012.0347
dc.sourceScopus
dc.typeArticle
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1049/el.2012.0347
dc.description.sourcetitleElectronics Letters
dc.description.volume48
dc.description.issue14
dc.description.page839-841
dc.description.codenELLEA
dc.identifier.isiut000306709400023
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.