Please use this identifier to cite or link to this item: https://doi.org/10.1016/S0167-8655(03)00165-X
DC FieldValue
dc.titleDetecting pattern-based outliers
dc.contributor.authorHu, T.
dc.contributor.authorSung, S.Y.
dc.date.accessioned2013-07-04T07:30:46Z
dc.date.available2013-07-04T07:30:46Z
dc.date.issued2003
dc.identifier.citationHu, T., Sung, S.Y. (2003). Detecting pattern-based outliers. Pattern Recognition Letters 24 (16) : 3059-3068. ScholarBank@NUS Repository. https://doi.org/10.1016/S0167-8655(03)00165-X
dc.identifier.issn01678655
dc.identifier.urihttp://scholarbank.nus.edu.sg/handle/10635/38959
dc.description.abstractOutlier detection targets those exceptional data that deviate from the general pattern. Besides high density clustering, there is another pattern called low density regularity. Thus, there are two types of outliers w.r.t. them. We propose two techniques: one to identify the two patterns and the other to detect the corresponding outliers. © 2003 Elsevier B.V. All rights reserved.
dc.description.urihttp://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0167-8655(03)00165-X
dc.sourceScopus
dc.subjectClustering
dc.subjectComplete spatial randomness
dc.subjectOutlier detection
dc.subjectRegular spacing
dc.typeArticle
dc.contributor.departmentCOMPUTER SCIENCE
dc.description.doi10.1016/S0167-8655(03)00165-X
dc.description.sourcetitlePattern Recognition Letters
dc.description.volume24
dc.description.issue16
dc.description.page3059-3068
dc.identifier.isiut000186170700015
Appears in Collections:Staff Publications

Show simple item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.