Please use this identifier to cite or link to this item:
https://doi.org/10.1016/S0006-2952(03)00262-4
DC Field | Value | |
---|---|---|
dc.title | Role of tissue transglutaminase in GTP depletion-induced apoptosis of insulin-secreting (HIT-T15) cells | |
dc.contributor.author | Huo, J. | |
dc.contributor.author | Li, G. | |
dc.contributor.author | Metz, S.A. | |
dc.date.accessioned | 2011-11-29T09:19:30Z | |
dc.date.available | 2011-11-29T09:19:30Z | |
dc.date.issued | 2003 | |
dc.identifier.citation | Huo, J., Li, G., Metz, S.A. (2003). Role of tissue transglutaminase in GTP depletion-induced apoptosis of insulin-secreting (HIT-T15) cells. Biochemical Pharmacology 66 (2) : 213-223. ScholarBank@NUS Repository. https://doi.org/10.1016/S0006-2952(03)00262-4 | |
dc.identifier.issn | 00062952 | |
dc.identifier.uri | http://scholarbank.nus.edu.sg/handle/10635/29035 | |
dc.description.abstract | The role of tissue transglutaminase (tTG), a calcium-dependent and GTP-modulated enzyme, in apoptotic death induced by GTP depletion in islet β-cells was investigated. GTP depletion and apoptosis were induced by mycophenolic acid (MPA) in insulin-secreting HIT-T15 cells. MPA treatment increased in situ tTG activity (but not protein levels) in a dose- and time-dependent manner in parallel with the induction of apoptosis. MPA-induced increases of both tTG activity and apoptosis were entirely blocked by co-provision of guanosine but not adenosine. MPA-enhanced tTG activity could be substantially reduced by co-exposure to monodansylcadaverine or putrescine (tTG inhibitors), and largely blocked by lowering free Ca2+ concentrations in the culture medium. However, MPA-induced cell death was either not changed or was only slightly reduced under these conditions. By contrast, a pan-caspase inhibitor (Z-VAD-FMK) entirely prevented apoptosis induced by MPA, but did not block the enhanced tTG activity, indicating that GTP depletion can induce apoptosis and activate tTG either independently or as part of a cascade of events involving caspases. Importantly, the morphological changes accompanying apoptosis could be markedly prevented by tTG inhibitors. These findings suggest that the effect of the marked increase in tTG activity in GTP depletion-induced apoptosis of insulin-secreting cells may be restricted to some terminal morphological changes. © 2003 Elsevier Science Inc. All rights reserved. | |
dc.description.uri | http://libproxy1.nus.edu.sg/login?url=http://dx.doi.org/10.1016/S0006-2952(03)00262-4 | |
dc.source | Scopus | |
dc.subject | Apoptosis | |
dc.subject | Caspase | |
dc.subject | Guanine nucleotides | |
dc.subject | Islet β-cells | |
dc.subject | Mycophenolic acid | |
dc.subject | Tissue transglutaminase | |
dc.type | Article | |
dc.contributor.department | NATIONAL UNIVERSITY MEDICAL INSTITUTES | |
dc.description.doi | 10.1016/S0006-2952(03)00262-4 | |
dc.description.sourcetitle | Biochemical Pharmacology | |
dc.description.volume | 66 | |
dc.description.issue | 2 | |
dc.description.page | 213-223 | |
dc.description.coden | BCPCA | |
dc.identifier.isiut | 000184051900004 | |
Appears in Collections: | Staff Publications |
Show simple item record
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.