Please use this identifier to cite or link to this item:
Title: A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering
Authors: Zhang, Z.-Y.
Teoh, S.H. 
Chong, W.-S.
Foo, T.-T.
Chng, Y.-C.
Choolani, M. 
Chan, J. 
Keywords: Bioreactor
Bone tissue engineering
Fetal mesenchymal stem cell
Issue Date: 2009
Citation: Zhang, Z.-Y., Teoh, S.H., Chong, W.-S., Foo, T.-T., Chng, Y.-C., Choolani, M., Chan, J. (2009). A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 30 (14) : 2694-2704. ScholarBank@NUS Repository.
Abstract: The generation of effective tissue engineered bone grafts requires efficient exchange of nutrients and mechanical stimulus. Bioreactors provide a manner in which this can be achieved. We have recently developed a biaxial rotating bioreactor with efficient fluidics through in-silico modeling. Here we investigated its performance for generation of highly osteogenic bone graft using polycaprolactone-tricalcium phosphate (PCL-TCP) scaffolds seeded with human fetal mesenchymal stem cell (hfMSC). hfMSC scaffolds were cultured in either bioreactor or static cultures, with assessment of cellular viability, proliferation and osteogenic differentiation in vitro and also after transplantation into immunodeficient mice. Compared to static culture, bioreactor-cultured hfMSC scaffolds reached cellular confluence earlier (day 7 vs. day 28), with greater cellularity (2×, p < 0.01), and maintained high cellular viability in the core, which was 2000 μm from the surface. In addition, bioreactor culture was associated with greater osteogenic induction, ALP expression (1.5× p < 0.01), calcium deposition (5.5×, p < 0.001) and bony nodule formation on SEM, and in-vivo ectopic bone formation in immunodeficient mice (3.2×, p < 0.001) compared with static-cultured scaffolds. The use of biaxial bioreactor here allowed the maintenance of cellular viability beyond the limits of conventional diffusion, with increased proliferation and osteogenic differentiation both in vitro and in vivo, suggesting its utility for bone tissue engineering applications. © 2009 Elsevier Ltd. All rights reserved.
Source Title: Biomaterials
ISSN: 01429612
DOI: 10.1016/j.biomaterials.2009.01.028
Appears in Collections:Staff Publications

Show full item record
Files in This Item:
There are no files associated with this item.

Google ScholarTM



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.