Please use this identifier to cite or link to this item: https://doi.org/10.1002/adma.202207121
DC FieldValue
dc.titleWidely Tunable Berry Curvature in the Magnetic Semimetal Cr(1+d)Te2
dc.contributor.authorYuita Fujisawa
dc.contributor.authorMarkel Pardo-Almanza
dc.contributor.authorChia-Hsiu Hsu
dc.contributor.authorAtwa Mohamed
dc.contributor.authorKohei Yamagami
dc.contributor.authorAnjana Krishnadas
dc.contributor.authorGuoqing Chang
dc.contributor.authorFeng-Chuan Chuang
dc.contributor.authorKhoong Hong Khoo
dc.contributor.authorJiadong Zang
dc.contributor.authorAnjan Soumyanarayanan
dc.contributor.authorYoshinori Okada
dc.date.accessioned2024-07-16T06:19:16Z
dc.date.available2024-07-16T06:19:16Z
dc.date.issued2023-01-16
dc.identifier.citationYuita Fujisawa, Markel Pardo-Almanza, Chia-Hsiu Hsu, Atwa Mohamed, Kohei Yamagami, Anjana Krishnadas, Guoqing Chang, Feng-Chuan Chuang, Khoong Hong Khoo, Jiadong Zang, Anjan Soumyanarayanan, Yoshinori Okada (2023-01-16). Widely Tunable Berry Curvature in the Magnetic Semimetal Cr(1+d)Te2. Advanced Materials 35 (12) : 2207121. ScholarBank@NUS Repository. https://doi.org/10.1002/adma.202207121
dc.identifier.issn1521-4095
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/249157
dc.description.abstractMagnetic semimetals have increasingly emerged as lucrative platforms hosting spin-based topological phenomena in real and momentum spaces. Cr1+δTe2 is a self-intercalated magnetic transition metal dichalcogenide (TMD), which exhibits topological magnetism and tunable electron filling. While recent studies have explored real-space Berry curvature effects, similar considerations of momentum-space Berry curvature are lacking. Here, the electronic structure and transport properties of epitaxial Cr1+δTe2 thin films are systematically investigated over a range of doping, δ (0.33 – 0.71). Spectroscopic experiments reveal the presence of a characteristic semi-metallic band region, which shows a rigid like energy shift with δ. Transport experiments show that the intrinsic component of the anomalous Hall effect (AHE) is sizable and undergoes a sign flip across δ. Finally, density functional theory calculations establish a link between the doping evolution of the band structure and AHE: the AHE sign flip is shown to emerge from the sign change of the Berry curvature, as the semi-metallic band region crosses the Fermi energy. These findings underscore the increasing relevance of momentum-space Berry curvature in magnetic TMDs and provide a unique platform for intertwining topological physics in real and momentum spaces.
dc.description.uri10.1002/adma.202207121
dc.publisherWiley-VCH GmbH
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.description.doi10.1002/adma.202207121
dc.description.sourcetitleAdvanced Materials
dc.description.volume35
dc.description.issue12
dc.description.page2207121
dc.published.statePublished
dc.grant.idJPMJCR1812; MOST-110-2112-M-110-013-MY3; NRF-NRFF13,2021-0010; A18A6b0057; DE-SC0020221
dc.grant.fundingagencyCREST, Japan; MOST, Taiwan; NRF, Singapore; A*STAR, Singapore; DOE, USA
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
23_AdvMat_Fujisawa_CrTeBerry_Paper.pdfManuscript7.8 MBAdobe PDF

OPEN

PublishedView/Download
23_AdvMat_Fujisawa_CrTeBerry_SI.pdfSupporting Information1.8 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons