Please use this identifier to cite or link to this item: https://doi.org/10.1021/acsaelm.3c00809
DC FieldValue
dc.titleAssessing Ultrathin Wafer-Scale WS2 as a Diffusion Barrier for Cu Interconnects
dc.contributor.authorSalim El Kazzi
dc.contributor.authorYa Woon Lum
dc.contributor.authorIvan Erofeev
dc.contributor.authorSaumitra Vajandar
dc.contributor.authorSergej Pasko
dc.contributor.authorSimonas Krotkus
dc.contributor.authorBen Conran
dc.contributor.authorOliver Whear
dc.contributor.authorThomas Osipowicz
dc.contributor.authorUtkur Mirziyodovich Mirsaidov
dc.date.accessioned2024-06-10T04:45:53Z
dc.date.available2024-06-10T04:45:53Z
dc.date.issued2023-09-05
dc.identifier.citationSalim El Kazzi, Ya Woon Lum, Ivan Erofeev, Saumitra Vajandar, Sergej Pasko, Simonas Krotkus, Ben Conran, Oliver Whear, Thomas Osipowicz, Utkur Mirziyodovich Mirsaidov (2023-09-05). Assessing Ultrathin Wafer-Scale WS2 as a Diffusion Barrier for Cu Interconnects. ScholarBank@NUS Repository. https://doi.org/10.1021/acsaelm.3c00809
dc.identifier.issn2637-6113
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/248755
dc.description.abstractTo maintain the scaling trends in the complementary metal oxide semiconductor (CMOS) technology, the thickness of barrier/liner systems used in back-end-of-line (BEOL) fabrication of metal interconnects needs to be sub-2 nm. However, reducing the thickness of the traditional barrier and liner systems necessary for the dimensional scaling of future interconnects is extremely challenging. Hence, ultrathin two-dimensional (2D) transition-metal dichalcogenide (TMD) films can be an alternative to current barrier/liner systems. However, the processes used to grow these films are generally not BEOL-compatible. Here, using the plasma-free metal–organic chemical vapor deposition (MOCVD) process, we grow BEOL-compatible tungsten disulfide (WS2) film, which has a clear advantage over current diffusion barrier/liner systems used in Cu-interconnects. Our results show that these WS2 films not only block Cu diffusion but also reduce the effective resistance of the Cu film by suppressing the grain boundary and interface scattering of electrons.
dc.language.isoen
dc.publisherACD Applied Electronic Materials
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject2Dmaterials
dc.subjectinterconnects
dc.subjectdiffusion barriers
dc.subjectMOCVD
dc.subjectnanofabrication
dc.typeArticle
dc.contributor.departmentBIOLOGICAL SCIENCES
dc.description.doi10.1021/acsaelm.3c00809
dc.published.statePublished
dc.grant.idI1801E0022
dc.grant.idNRF-CRP23-2019-0001
dc.grant.fundingagencyApplied Materials-NUS Advanced Materials Corporate Lab
dc.grant.fundingagencyNational Research Foundation of Singapore
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Manuscript_draft_clean.pdfManuscript10.98 MBAdobe PDF

OPEN

Post-printView/Download
Supporting_Info_16082023.pdfSupporting information2.31 MBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons