Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41565-023-01407-1
DC FieldValue
dc.titleFerromagnetic single-atom spin catalyst for boosting water splitting
dc.contributor.authorSun, Tao
dc.contributor.authorTang, Zhiyuan
dc.contributor.authorZang, Wenjie
dc.contributor.authorLi, Zejun
dc.contributor.authorLi, Jing
dc.contributor.authorLi, Zhihao
dc.contributor.authorCao, Liang
dc.contributor.authorRodriguez, Jan Sebastian Dominic
dc.contributor.authorMariano, Carl Osby M
dc.contributor.authorXu, Haomin
dc.contributor.authorLyu, Pin
dc.contributor.authorHai, Xiao
dc.contributor.authorLin, Huihui
dc.contributor.authorSheng, Xiaoyu
dc.contributor.authorShi, Jiwei
dc.contributor.authorZheng, Yi
dc.contributor.authorLu, Ying-Rui
dc.contributor.authorHe, Qian
dc.contributor.authorChen, Jingsheng
dc.contributor.authorNovoselov, Kostya S
dc.contributor.authorChuang, Cheng-Hao
dc.contributor.authorXi, Shibo
dc.contributor.authorLuo, Xin
dc.contributor.authorLu, Jiong
dc.date.accessioned2024-04-25T06:29:23Z
dc.date.available2024-04-25T06:29:23Z
dc.date.issued2023-07
dc.identifier.citationSun, Tao, Tang, Zhiyuan, Zang, Wenjie, Li, Zejun, Li, Jing, Li, Zhihao, Cao, Liang, Rodriguez, Jan Sebastian Dominic, Mariano, Carl Osby M, Xu, Haomin, Lyu, Pin, Hai, Xiao, Lin, Huihui, Sheng, Xiaoyu, Shi, Jiwei, Zheng, Yi, Lu, Ying-Rui, He, Qian, Chen, Jingsheng, Novoselov, Kostya S, Chuang, Cheng-Hao, Xi, Shibo, Luo, Xin, Lu, Jiong (2023-07). Ferromagnetic single-atom spin catalyst for boosting water splitting. NATURE NANOTECHNOLOGY 18 (7) : 763-+. ScholarBank@NUS Repository. https://doi.org/10.1038/s41565-023-01407-1
dc.identifier.issn1748-3387
dc.identifier.issn1748-3395
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/248072
dc.description.abstractHeterogeneous single-atom spin catalysts combined with magnetic fields provide a powerful means for accelerating chemical reactions with enhanced metal utilization and reaction efficiency. However, designing these catalysts remains challenging due to the need for a high density of atomically dispersed active sites with a short-range quantum spin exchange interaction and long-range ferromagnetic ordering. Here, we devised a scalable hydrothermal approach involving an operando acidic environment for synthesizing various single-atom spin catalysts with widely tunable substitutional magnetic atoms (M1) in a MoS2 host. Among all the M1/MoS2 species, Ni1/MoS2 adopts a distorted tetragonal structure that prompts both ferromagnetic coupling to nearby S atoms as well as adjacent Ni1 sites, resulting in global room-temperature ferromagnetism. Such coupling benefits spin-selective charge transfer in oxygen evolution reactions to produce triplet O2. Furthermore, a mild magnetic field of ~0.5 T enhances the oxygen evolution reaction magnetocurrent by ~2,880% over Ni1/MoS2, leading to excellent activity and stability in both seawater and pure water splitting cells. As supported by operando characterizations and theoretical calculations, a great magnetic-field-enhanced oxygen evolution reaction performance over Ni1/MoS2 is attributed to a field-induced spin alignment and spin density optimization over S active sites arising from field-regulated S(p)–Ni(d) hybridization, which in turn optimizes the adsorption energies for radical intermediates to reduce overall reaction barriers.
dc.language.isoen
dc.publisherNATURE PORTFOLIO
dc.sourceElements
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectNanoscience & Nanotechnology
dc.subjectMaterials Science, Multidisciplinary
dc.subjectScience & Technology - Other Topics
dc.subjectMaterials Science
dc.subjectMAGNETIC-FIELD
dc.subjectOXIDATION
dc.subjectOXIDE
dc.typeArticle
dc.date.updated2024-04-25T06:17:59Z
dc.contributor.departmentCHEMISTRY
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1038/s41565-023-01407-1
dc.description.sourcetitleNATURE NANOTECHNOLOGY
dc.description.volume18
dc.description.issue7
dc.description.page763-+
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
7-submitted.pdfSubmitted version29.06 MBAdobe PDF

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.