Please use this identifier to cite or link to this item: https://doi.org/doi.org/10.1038/s41467-024-47614-9
DC FieldValue
dc.titleTopology Selectivity of a Conformationally Flexible Precursor by Selenium Doping
dc.contributor.authorLiangliang Cai
dc.contributor.authorTianhao Gao
dc.contributor.authorA. T. S. Wee
dc.date.accessioned2024-04-17T09:26:06Z
dc.date.available2024-04-17T09:26:06Z
dc.date.issued2024-04-05
dc.identifier.citationLiangliang Cai, Tianhao Gao, A. T. S. Wee (2024-04-05). Topology Selectivity of a Conformationally Flexible Precursor by Selenium Doping. Nature Communications 15 : 3235-3244. ScholarBank@NUS Repository. https://doi.org/doi.org/10.1038/s41467-024-47614-9
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/247958
dc.description.abstractConformational arrangements within nanostructures play a crucial role in shaping the overall configuration and determining the properties, for example in covalent/metal organic frameworks. In on-surface synthesis, conformational diversity often leads to uncontrollable or disordered structures. Therefore, the exploration of controlling and directing the conformational arrangements is significant in achieving desired nanoarchitectures. Herein, a conformationally flexible precursor 2,4,6-tris(3-bromophenyl)−1,3,5-triazine is employed, and a random phase consisting of C3h and Cs conformers is firstly obtained after deposition of the precursor on Cu(111) at room temperature to 365 K. At low coverage (0.01ML) selenium doping, we achieve the selectivity of the C3h conformer and improve the nanopore structural homogeneity. The ordered two-dimensional metal organic nanostructure can be fulfilled by selenium doping from room temperature to 365 K. The formation of the conformationally flexible precursor on Cu(111) is explored through the combination of high-resolution scanning tunneling microscopy and non-contact atomic forcemicroscopy. The regulation of energy diagrams in the absence or presence of the Se atom is revealed by density functional theory calculations. These results can enrich the on-surface synthesis toolbox of conformationally flexible precursors, for the design of complex nanoarchitectures, and for future development of engineered nanomaterials.
dc.language.isoen
dc.publisherSpringer Nature
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectSelectivity
dc.subjectprecursor
dc.subjectmetal-organic frameworks
dc.subjectlow temperature STM
dc.subjectnon-contact AFM
dc.typeArticle
dc.contributor.departmentPHYSICS
dc.description.doidoi.org/10.1038/s41467-024-47614-9
dc.description.sourcetitleNature Communications
dc.description.volume15
dc.description.page3235-3244
dc.published.statePublished
dc.grant.idNRF CRP26-2021RS-0001 (26WBSA-8000421-03-00)
dc.grant.fundingagencyNational Research Foundation Singapore
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
s41467-024-47614-9.pdfFull Article2.12 MBAdobe PDF

OPEN

PublishedView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons