Please use this identifier to cite or link to this item: https://doi.org/10.1080/01621459.2022.2086132
DC FieldValue
dc.titleBayesian inference using synthetic likelihood: asymptotics and adjustments
dc.contributor.authorDavid Frazier
dc.contributor.authorDavid J Nott
dc.contributor.authorChristopher C Drovandi
dc.contributor.authorRobert J Kohn
dc.date.accessioned2024-01-18T09:42:51Z
dc.date.available2024-01-18T09:42:51Z
dc.date.issued2022-07-11
dc.identifier.citationDavid Frazier, David J Nott, Christopher C Drovandi, Robert J Kohn (2022-07-11). Bayesian inference using synthetic likelihood: asymptotics and adjustments. Journal of the American Statistical Association 118 (544) : 2821-2832. ScholarBank@NUS Repository. https://doi.org/10.1080/01621459.2022.2086132
dc.identifier.issn0162-1459
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/246742
dc.publisherTaylor & Francis
dc.sourceTaylor & Francis
dc.typeArticle
dc.contributor.departmentSTATISTICS & APPLIED PROBABILITY
dc.description.doi10.1080/01621459.2022.2086132
dc.description.sourcetitleJournal of the American Statistical Association
dc.description.volume118
dc.description.issue544
dc.description.page2821-2832
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10.108001621459.2022.2086132.zip1.27 MBZIP

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.