Please use this identifier to cite or link to this item: https://doi.org/10.1021/acs.nanolett.3c00933
DC FieldValue
dc.titleEngineering Refractive Index Contrast in Thin Film Barium Titanate-on-Insulator
dc.contributor.authorCao, Yu
dc.contributor.authorLiang, Haidong
dc.contributor.authorLin, Hong-Lin
dc.contributor.authorQi, Luo
dc.contributor.authorYang, Ping
dc.contributor.authorFong, Xuanyao
dc.contributor.authorDogheche, Elhadj
dc.contributor.authorBettiol, Andrew
dc.contributor.authorDanner, Aaron
dc.date.accessioned2023-11-06T02:58:50Z
dc.date.available2023-11-06T02:58:50Z
dc.date.issued2023-08-23
dc.identifier.citationCao, Yu, Liang, Haidong, Lin, Hong-Lin, Qi, Luo, Yang, Ping, Fong, Xuanyao, Dogheche, Elhadj, Bettiol, Andrew, Danner, Aaron (2023-08-23). Engineering Refractive Index Contrast in Thin Film Barium Titanate-on-Insulator. NANO LETTERS 23 (16). ScholarBank@NUS Repository. https://doi.org/10.1021/acs.nanolett.3c00933
dc.identifier.issn1530-6984
dc.identifier.issn1530-6992
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/245739
dc.description.abstractBarium titanate-on-insulator has demonstrated excellent vertical optical confinement, low loss, and strong electro-optic properties. To fabricate a waveguide-based device, a region of higher refractive index must be created to confine a propagating mode, one way of which is through dry etching to form a ridge. However, despite recent progress achieved in etching barium titanate and similar materials, the sidewall and surface roughness resulting from the physical etching typically used limit the achievable ridge depth. This motivates the exploration of etch-free methods to achieve the required index contrast. Here, we introduce three etch-free methods to create a refractive index contrast in barium titanate-on-insulator, including a metal diffusion method, proton beam irradiation method, and crystallinity control method. Notably, molybdenum-diffused barium titanate leads to a large index change of up to 0.17. The methods provided in this work can be further developed to fabricate various on-chip barium titanate optical waveguide-based devices.
dc.language.isoen
dc.publisherAMER CHEMICAL SOC
dc.sourceElements
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Multidisciplinary
dc.subjectChemistry, Physical
dc.subjectNanoscience & Nanotechnology
dc.subjectMaterials Science, Multidisciplinary
dc.subjectPhysics, Applied
dc.subjectPhysics, Condensed Matter
dc.subjectChemistry
dc.subjectScience & Technology - Other Topics
dc.subjectMaterials Science
dc.subjectPhysics
dc.subjectBarium titanate-on-insulator
dc.subjectrefractiveindex
dc.subjectmetal diffusion
dc.subjectproton beam irradiation
dc.subjectcrystallinitycontrol
dc.subjectOPTICAL WAVE-GUIDE
dc.subjectDIFFUSED LINBO3
dc.subjectELECTROOPTIC MODULATOR
dc.subjectENHANCEMENT
dc.typeArticle
dc.date.updated2023-11-05T08:45:19Z
dc.contributor.departmentPHYSICS
dc.contributor.departmentELECTRICAL AND COMPUTER ENGINEERING
dc.contributor.departmentNUS NANOSCIENCE & NANOTECH INITIATIVE
dc.contributor.departmentSINGAPORE SYNCHROTRON LIGHT SOURCE
dc.description.doi10.1021/acs.nanolett.3c00933
dc.description.sourcetitleNANO LETTERS
dc.description.volume23
dc.description.issue16
dc.published.stateUnpublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
cao-et-al-2023-engineering-refractive-index-contrast-in-thin-film-barium-titanate-on-insulator.pdfPublished version3.69 MBAdobe PDF

CLOSED

None

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.