Please use this identifier to cite or link to this item: https://doi.org/10.1021/acsami.1c23087
DC FieldValue
dc.titleAll-Ceramic SiC Aerogel for Wide Temperature Range Electromagnetic Wave Attenuation
dc.contributor.authorLan, Xiaolin
dc.contributor.authorHou, Yi
dc.contributor.authorDong, Xinyu
dc.contributor.authorYang, Zhihong
dc.contributor.authorBa, Quoc Thai
dc.contributor.authorYang, Yong
dc.contributor.authorZhai, Wei
dc.date.accessioned2023-07-24T01:21:54Z
dc.date.available2023-07-24T01:21:54Z
dc.date.issued2022-04-06
dc.identifier.citationLan, Xiaolin, Hou, Yi, Dong, Xinyu, Yang, Zhihong, Ba, Quoc Thai, Yang, Yong, Zhai, Wei (2022-04-06). All-Ceramic SiC Aerogel for Wide Temperature Range Electromagnetic Wave Attenuation. ACS APPLIED MATERIALS & INTERFACES 14 (13) : 15360-15369. ScholarBank@NUS Repository. https://doi.org/10.1021/acsami.1c23087
dc.identifier.issn1944-8244,1944-8252
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/243345
dc.description.abstractA novel type of all-ceramic SiC aerogel was fabricated by freeze casting and carbothermal reduction reaction processes using graphene oxide (GO) doped SiC nanowires suspensions as starting materials. The effect of GO addition (0, 1, 2, and 4 mg/mL) on the porous morphologies, chemical composition, and the electromagnetic (EM) performance of the SiC aerogels were investigated. The optimum all-ceramic SiC aerogel exhibits effective whole X-band attenuation (>90%) at a fixed thickness of 3.3 mm from room temperature to 400 °C. It is ultralight with a density of 0.2 g/cm3and possesses a low thermal conductivity of about 0.05 W/mK. The material composition remains stable at temperatures up to 800 °C. The lightweight, high thermal stability, low thermal conductivity, and excellent X-band attenuation performance at a fixed thin thickness make the all-ceramic SiC aerogels potential EM attenuation materials for many applications in harsh environments.
dc.language.isoen
dc.publisherAMER CHEMICAL SOC
dc.sourceElements
dc.subjectScience & Technology
dc.subjectTechnology
dc.subjectNanoscience & Nanotechnology
dc.subjectMaterials Science, Multidisciplinary
dc.subjectScience & Technology - Other Topics
dc.subjectMaterials Science
dc.subjectSiC aerogel
dc.subjectfreeze casting
dc.subjectunidirectional porous structure
dc.subjectEM wave attenuation
dc.subjectwide temperature range
dc.subjectMICROWAVE-ABSORPTION PROPERTIES
dc.subjectTHERMAL INSULATION
dc.subjectNANOWIRES
dc.subjectLIGHTWEIGHT
dc.subjectCOMPOSITES
dc.subjectFOAM
dc.subjectMAT
dc.typeArticle
dc.date.updated2023-07-21T05:46:49Z
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1021/acsami.1c23087
dc.description.sourcetitleACS APPLIED MATERIALS & INTERFACES
dc.description.volume14
dc.description.issue13
dc.description.page15360-15369
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
2022-ACS AMI-SiC aerogels.pdf7.21 MBAdobe PDF

CLOSED

Published

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.