Please use this identifier to cite or link to this item: https://doi.org/10.1021/acsenergylett.2c02425
DC FieldValue
dc.title3D-Printed Porous Thermoelectrics for In Situ Energy Harvesting
dc.contributor.authorZhang, Danwei
dc.contributor.authorLim, Xiu Jun Genevieve
dc.contributor.authorLi, Xinwei
dc.contributor.authorSaglik, Kivanc
dc.contributor.authorSolco, Samantha Faye Duran
dc.contributor.authorTan, Xian Yi
dc.contributor.authorLeow, Yihao
dc.contributor.authorZhai, Wei
dc.contributor.authorTan, Chee Kiang Ivan
dc.contributor.authorXu, Jianwei
dc.contributor.authorSuwardi, Ady
dc.date.accessioned2023-07-21T07:22:53Z
dc.date.available2023-07-21T07:22:53Z
dc.date.issued2022-12-05
dc.identifier.citationZhang, Danwei, Lim, Xiu Jun Genevieve, Li, Xinwei, Saglik, Kivanc, Solco, Samantha Faye Duran, Tan, Xian Yi, Leow, Yihao, Zhai, Wei, Tan, Chee Kiang Ivan, Xu, Jianwei, Suwardi, Ady (2022-12-05). 3D-Printed Porous Thermoelectrics for In Situ Energy Harvesting. ACS ENERGY LETTERS 8 (1) : 332-338. ScholarBank@NUS Repository. https://doi.org/10.1021/acsenergylett.2c02425
dc.identifier.issn2380-8195
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/243307
dc.description.abstractThe rapid growth of industrialization has resulted in an tremendous increase in energy demands. The vast amount of untapped waste heat found in factories and power plants can be harnessed to power devices. Thermoelectric materials enable a clean conversion of heat to electrical energy and vice versa, without the need for moving parts. However, existing thermoelectric generators are limited to capturing heat from exterior surfaces. Additive manufacturing offers itself as a cost-effective process that produces complex parts which can recover waste heat from direct heat flows. Herein, we report the first ever in situ energy harvester through porous 3D thermoelectrics. Complex 3D-printed Bi0.5Sb1.5Te3 open cellular structures of high specific surface area are fabricated to allow a high rate of heat transfer throughout the heat pipes with negligible effect on the liquid flow. This work opens up exciting possibilities of energy harvesting from natural self-sustaining thermal gradients found in exhaust pipes and heat exchangers.
dc.language.isoen
dc.publisherAMER CHEMICAL SOC
dc.sourceElements
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectElectrochemistry
dc.subjectEnergy & Fuels
dc.subjectNanoscience & Nanotechnology
dc.subjectMaterials Science, Multidisciplinary
dc.subjectChemistry
dc.subjectScience & Technology - Other Topics
dc.subjectMaterials Science
dc.subjectPERFORMANCE
dc.typeArticle
dc.date.updated2023-07-21T05:40:28Z
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.contributor.departmentMECHANICAL ENGINEERING
dc.description.doi10.1021/acsenergylett.2c02425
dc.description.sourcetitleACS ENERGY LETTERS
dc.description.volume8
dc.description.issue1
dc.description.page332-338
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
2023-ACS Energylett-Lattice thermoelectrics.pdf4.66 MBAdobe PDF

CLOSED

Published

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.