Please use this identifier to cite or link to this item: https://doi.org/10.1089/ten.tec.2013.0733
DC FieldValue
dc.titleNovel Use for Polyvinylpyrrolidone as a Macromolecular Crowder for Enhanced Extracellular Matrix Deposition and Cell Proliferation
dc.contributor.authorRashid, Rafi
dc.contributor.authorLim, Natalie Sheng Jie
dc.contributor.authorChee, Stella Min Ling
dc.contributor.authorPng, Si Ning
dc.contributor.authorWohland, Thorsten
dc.contributor.authorRaghunath, Michael
dc.date.accessioned2023-07-17T23:45:55Z
dc.date.available2023-07-17T23:45:55Z
dc.date.issued2014-12-01
dc.identifier.citationRashid, Rafi, Lim, Natalie Sheng Jie, Chee, Stella Min Ling, Png, Si Ning, Wohland, Thorsten, Raghunath, Michael (2014-12-01). Novel Use for Polyvinylpyrrolidone as a Macromolecular Crowder for Enhanced Extracellular Matrix Deposition and Cell Proliferation. TISSUE ENGINEERING PART C-METHODS 20 (12) : 994-1002. ScholarBank@NUS Repository. https://doi.org/10.1089/ten.tec.2013.0733
dc.identifier.issn1937-3384
dc.identifier.issn1937-3392
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/243165
dc.description.abstractMacromolecular crowding (MMC) is a biophysical effect that governs biochemical processes inside and outside of cells. Since standard cell culture media lack this effect, the physiological performance of differentiated and progenitor cells, including extracellular matrix (ECM) deposition, is impaired in vitro. To bring back physiological crowdedness to in vitro systems, we have previously introduced carbohydrate-based macromolecules to culture media and have achieved marked improvements with mixed MMC in terms of ECM deposition and differentiation of mesenchymal stem cells (MSCs). We show here that although this system is successful, it is limited, due to viscosity, to only 33% of the fractional volume occupancy (FVO) of full serum, which we calculated to have an FVO of approximately 54% v/v. We show here that full-serum FVO can be achieved using polyvinylpyrrolidone (PVP) 360kDa. Under these conditions, ECM deposition in human fibroblasts and MSCs is on par, if not stronger than, with original MMC protocols using carbohydrates, but with a viscosity that is not significantly changed. In addition, we have found that the proliferation rate for bone marrow-derived MSCs and fibroblasts increases slightly in the presence of PVP360, similar to that observed with carbohydrate-based crowders. A palette of MMC compounds is now emerging that enables us to tune the crowdedness of culture media seamlessly from interstitial fluid (9% FVO), in which the majority of tissue cells might be based, to serum environments mimicking intravascular conditions. Despite identical FVO's, individual crowder size effects play a role and different cell types appear to have preferences in terms of FVO and the crowder that this is achieved with. However, in the quest of crowders that we have predicted to have a smoother regulatory approval path, PVP is a highly interesting compound, as it has been widely used in the medical and food industries and shows a novel promising use in cell culture and tissue engineering.
dc.language.isoen
dc.publisherMARY ANN LIEBERT, INC
dc.sourceElements
dc.subjectScience & Technology
dc.subjectLife Sciences & Biomedicine
dc.subjectTechnology
dc.subjectCell & Tissue Engineering
dc.subjectCell Biology
dc.subjectEngineering, Biomedical
dc.subjectMaterials Science, Biomaterials
dc.subjectEngineering
dc.subjectMaterials Science
dc.subjectIN-VITRO
dc.typeArticle
dc.date.updated2023-07-17T07:16:01Z
dc.contributor.departmentBIOENGINEERING
dc.contributor.departmentBIOLOGY (NU)
dc.contributor.departmentNUS Enterprise
dc.contributor.departmentNUS GRADUATE SCHOOL
dc.description.doi10.1089/ten.tec.2013.0733
dc.description.sourcetitleTISSUE ENGINEERING PART C-METHODS
dc.description.volume20
dc.description.issue12
dc.description.page994-1002
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
ten.tec.2013.0733.pdfPublished version522.53 kBAdobe PDF

OPEN

PublishedView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.