Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.pbiomolbio.2018.09.001
DC FieldValue
dc.titleSingle-molecule studies of flavivirus envelope dynamics: Experiment and computation
dc.contributor.authorSharma, Kamal Kant
dc.contributor.authorMarzinek, Jan K
dc.contributor.authorTantirimudalige, Sarala Neomi
dc.contributor.authorBond, Peter J
dc.contributor.authorWohland, Thorsten
dc.date.accessioned2023-07-06T09:16:15Z
dc.date.available2023-07-06T09:16:15Z
dc.date.issued2019-05-01
dc.identifier.citationSharma, Kamal Kant, Marzinek, Jan K, Tantirimudalige, Sarala Neomi, Bond, Peter J, Wohland, Thorsten (2019-05-01). Single-molecule studies of flavivirus envelope dynamics: Experiment and computation. PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY 143 : 38-51. ScholarBank@NUS Repository. https://doi.org/10.1016/j.pbiomolbio.2018.09.001
dc.identifier.issn0079-6107
dc.identifier.issn1873-1732
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/242842
dc.description.abstractFlaviviruses are simple enveloped viruses exhibiting complex structural and functional heterogeneities. Decades of research have provided crucial basic insights, antiviral medication and moderately successful gene therapy trials. The most infectious particle is, however, not always the most abundant one in a population, questioning the utility of classic ensemble-averaging virology approaches. Indeed, viral replication is often not particularly efficient, prone to errors or containing parallel routes. Here, we review different single-molecule sensitive fluorescence methods that are employed to investigate flaviviruses. In particular, we review how (i) time-resolved Förster resonance energy transfer (trFRET) was applied to probe dengue envelope conformations; (ii) FRET-fluorescence correlation spectroscopy to investigate dengue envelope intrinsic dynamics and (iii) single particle tracking to follow the path of dengue viruses in cells. We also discuss how such methods may be supported by molecular dynamics (MD) simulations over a range of spatio-temporal scales, to provide complementary data on the structure and dynamics of flaviviral systems. We describe recent improvements in multiscale MD approaches that allowed the simulation of dengue particle envelopes in near-atomic resolution. We hope this review is an incentive for setting up and applying similar single-molecule studies and combine them with MD simulations to investigate structural dynamics of entire flavivirus particles over the nanosecond-to-millisecond time-scale and follow viruses during infection in cells over milliseconds to minutes.
dc.language.isoen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.sourceElements
dc.subjectScience & Technology
dc.subjectLife Sciences & Biomedicine
dc.subjectBiochemistry & Molecular Biology
dc.subjectBiophysics
dc.subjectDengue virus
dc.subjectFlavivirus dynamics
dc.subjectSingle molecule fluorescence
dc.subjectTime-resolve FRET
dc.subjectFRET-FCS
dc.subjectTemperature-dependent changes
dc.subjectCation-dependent changes
dc.subjectMolecular dynamics (MD) simulations
dc.subjectCoarse-grained (CG) modelling
dc.subjectACTIN-BASED MOTILITY
dc.subjectGRAINED FORCE-FIELD
dc.subjectBORNE ENCEPHALITIS-VIRUS
dc.subjectDENGUE VIRUS
dc.subjectPARTICLE TRACKING
dc.subjectCONFORMATIONAL DYNAMICS
dc.subjectFLUORESCENCE SPECTROSCOPY
dc.subjectBIOMOLECULAR SIMULATION
dc.subject3-DIMENSIONAL TRACKING
dc.subjectPROTEIN-STRUCTURE
dc.typeReview
dc.date.updated2023-07-06T08:05:26Z
dc.contributor.departmentBIOLOGICAL SCIENCES
dc.contributor.departmentBIOLOGICAL SCIENCES
dc.description.doi10.1016/j.pbiomolbio.2018.09.001
dc.description.sourcetitlePROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY
dc.description.volume143
dc.description.page38-51
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Single-molecule studies of flavivirus envelope dynamics- Experiment and computation.pdfPublished version2.26 MBAdobe PDF

CLOSED

None

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.