Please use this identifier to cite or link to this item: https://doi.org/10.3389/frsen.2022.834908
DC FieldValue
dc.titleEmpirical Remote Sensing Algorithms to Retrieve SPM and CDOM in Québec Coastal Waters
dc.contributor.authorMabit, Raphaël
dc.contributor.authorAraújo, Carlos AS
dc.contributor.authorSingh, Rakesh Kumar
dc.contributor.authorBélanger, Simon
dc.date.accessioned2023-06-14T03:48:24Z
dc.date.available2023-06-14T03:48:24Z
dc.identifier.citationMabit, Raphaël, Araújo, Carlos AS, Singh, Rakesh Kumar, Bélanger, Simon. Empirical Remote Sensing Algorithms to Retrieve SPM and CDOM in Québec Coastal Waters. Frontiers in Remote Sensing 3. ScholarBank@NUS Repository. https://doi.org/10.3389/frsen.2022.834908
dc.identifier.issn2673-6187
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/241942
dc.description.abstract<jats:p>In most coastal waters, riverine inputs of suspended particulate matter (SPM) and colored dissolved organic matter (CDOM) are the primary optically active constituents. Moderate- and high-resolution satellite optical sensors, such as the Operational Land Imager (OLI) on Landsat-8 and the MultiSpectral Instrument (MSI) on Sentinel-2, offer a synoptic view at high spatial resolution (10–30 m) with weekly revisits allowing the study of coastal dynamics (e.g., river plumes and sediment re-suspension events). Accurate estimations of CDOM and SPM from space require regionally tuned bio-optical algorithms. Using an <jats:italic>in situ</jats:italic> dataset of CDOM, SPM, and optical properties (both apparent and inherent) from various field campaigns carried out in the coastal waters of the estuary and Gulf of St. Lawrence (EGSL) and eastern James Bay (JB) (<jats:italic>N</jats:italic> = 347), we developed regional algorithms for OLI and MSI sensors. We found that CDOM absorption at 440 nm [<jats:italic>a</jats:italic><jats:sub>g</jats:sub> (440)] can be retrieved using the red-to-green band ratio for both EGSL and JB. In contrast, the SPM algorithm required regional adjustments due to significant differences in mass-specific inherent optical properties. Finally, the application of regional algorithms to satellite images from OLI and MSI indicated that the atmospheric correction (AC) algorithm C2RCC gives the most accurate remote-sensing reflectance (<jats:italic>R</jats:italic><jats:sub>rs</jats:sub>) absolute values. However, the ACOLITE algorithm gives the best results for CDOM estimation (almost null bias; median symmetric accuracy of 45% and <jats:italic>R</jats:italic><jats:sup>2</jats:sup> of 0.78) as it preserved the <jats:italic>R</jats:italic><jats:sub>rs</jats:sub> spectral shape, while tending to yield positively bias SPM (88%). We conclude that the choice of the algorithm depends on the parameter of interest.</jats:p>
dc.publisherFrontiers Media SA
dc.sourceElements
dc.typeArticle
dc.date.updated2023-06-07T07:20:09Z
dc.contributor.departmentCTR FOR REM IMAGING,SENSING & PROCESSING
dc.description.doi10.3389/frsen.2022.834908
dc.description.sourcetitleFrontiers in Remote Sensing
dc.description.volume3
dc.published.statePublished online
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
frsen-03-834908.pdfPublished version4.32 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.