Please use this identifier to cite or link to this item: https://doi.org/10.3390/rs14133123
DC FieldValue
dc.titleSpatio-Temporal Variability of Suspended Particulate Matter in a High-Arctic Estuary (Adventfjorden, Svalbard) Using Sentinel-2 Time-Series
dc.contributor.authorWalch, DMR
dc.contributor.authorSingh, RK
dc.contributor.authorSøreide, JE
dc.contributor.authorLantuit, H
dc.contributor.authorPoste, A
dc.date.accessioned2023-06-13T12:29:24Z
dc.date.available2023-06-13T12:29:24Z
dc.date.issued2022-07-01
dc.identifier.citationWalch, DMR, Singh, RK, Søreide, JE, Lantuit, H, Poste, A (2022-07-01). Spatio-Temporal Variability of Suspended Particulate Matter in a High-Arctic Estuary (Adventfjorden, Svalbard) Using Sentinel-2 Time-Series. Remote Sensing 14 (13) : 3123-3123. ScholarBank@NUS Repository. https://doi.org/10.3390/rs14133123
dc.identifier.issn2072-4292
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/241917
dc.description.abstractArctic coasts, which feature land-ocean transport of freshwater, sediments, and other terrestrial material, are impacted by climate change, including increased temperatures, melting glaciers, changes in precipitation and runoff. These trends are assumed to affect productivity in fjordic estuaries. However, the spatial extent and temporal variation of the freshwater-driven darkening of fjords remain unresolved. The present study illustrates the spatio-temporal variability of suspended particulate matter (SPM) in the Adventfjorden estuary, Svalbard, using in-situ field campaigns and ocean colour remote sensing (OCRS) via high-resolution Sentinel-2 imagery. To compute SPM concentration (CSPMsat ), a semi-analytical algorithm was regionally calibrated using local in-situ data, which improved the accuracy of satellite-derived SPM concentration by ~20% (MRD). Analysis of SPM concentration for two consecutive years (2019, 2020) revealed strong seasonality of SPM in Adventfjorden. Highest estimated SPM concentrations and river plume extent (% of fjord with CSPMsat > 30 mg L−1 ) occurred during June, July, and August. Concurrently, we observed a strong relationship between river plume extent and average air temperature over the 24 h prior to the observation (R2 = 0.69). Considering predicted changes to environmental conditions in the Arctic region, this study highlights the importance of the rapidly changing environmental parameters and the significance of remote sensing in analysing fluxes in light attenuating particles, especially in the coastal Arctic Ocean.
dc.publisherMDPI AG
dc.sourceElements
dc.typeArticle
dc.date.updated2023-06-07T07:17:09Z
dc.contributor.departmentCTR FOR REM IMAGING,SENSING & PROCESSING
dc.description.doi10.3390/rs14133123
dc.description.sourcetitleRemote Sensing
dc.description.volume14
dc.description.issue13
dc.description.page3123-3123
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
remotesensing-14-03123-v3.pdfPublished version3.69 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.