Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41467-023-36407-1
DC FieldValue
dc.titleEngineering nanoscale H supply chain to accelerate methanol synthesis on ZnZrO<inf>x</inf>
dc.contributor.authorLee, K
dc.contributor.authorMendes, PCD
dc.contributor.authorJeon, H
dc.contributor.authorSong, Y
dc.contributor.authorDickieson, MP
dc.contributor.authorAnjum, U
dc.contributor.authorChen, L
dc.contributor.authorYang, TC
dc.contributor.authorYang, CM
dc.contributor.authorChoi, M
dc.contributor.authorKozlov, SM
dc.contributor.authorYan, N
dc.date.accessioned2023-06-05T02:01:22Z
dc.date.available2023-06-05T02:01:22Z
dc.date.issued2023-12-01
dc.identifier.citationLee, K, Mendes, PCD, Jeon, H, Song, Y, Dickieson, MP, Anjum, U, Chen, L, Yang, TC, Yang, CM, Choi, M, Kozlov, SM, Yan, N (2023-12-01). Engineering nanoscale H supply chain to accelerate methanol synthesis on ZnZrO<inf>x</inf>. Nature Communications 14 (1) : 819-. ScholarBank@NUS Repository. https://doi.org/10.1038/s41467-023-36407-1
dc.identifier.issn2041-1723
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/241561
dc.description.abstractMetal promotion is the most widely adopted strategy for enhancing the hydrogenation functionality of an oxide catalyst. Typically, metal nanoparticles or dopants are located directly on the catalyst surface to create interfacial synergy with active sites on the oxide, but the enhancement effect may be compromised by insufficient hydrogen delivery to these sites. Here, we introduce a strategy to promote a ZnZrOx methanol synthesis catalyst by incorporating hydrogen activation and delivery functions through optimized integration of ZnZrOx and Pd supported on carbon nanotube (Pd/CNT). The CNT in the Pd/CNT + ZnZrOx system delivers hydrogen activated on Pd to a broad area on the ZnZrOx surface, with an enhancement factor of 10 compared to the conventional Pd-promoted ZnZrOx catalyst, which only transfers hydrogen to Pd-adjacent sites. In CO2 hydrogenation to methanol, Pd/CNT + ZnZrOx exhibits drastically boosted activity—the highest among reported ZnZrOx-based catalysts—and excellent stability over 600 h on stream test, showing potential for practical implementation.
dc.publisherSpringer Science and Business Media LLC
dc.sourceElements
dc.typeArticle
dc.date.updated2023-06-04T11:49:03Z
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.description.doi10.1038/s41467-023-36407-1
dc.description.sourcetitleNature Communications
dc.description.volume14
dc.description.issue1
dc.description.page819-
dc.published.stateAccepted
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Engineering nanoscale H supply chain to accelerate methanol synthesis on ZnZrOsubxsub.pdfPublished version5.09 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.