Please use this identifier to cite or link to this item: https://doi.org/10.1039/d2ta01962k
DC FieldValue
dc.titlePromoting oxygen reduction via coordination environment modulation through secondary metal-atom incorporation
dc.contributor.authorYang, Haozhou
dc.contributor.authorZhang, Tianyu
dc.contributor.authorChi, Xiao
dc.contributor.authorYu, Xiaojiang
dc.contributor.authorChen, Junmei
dc.contributor.authorChen, Jiayi
dc.contributor.authorLi, Chunfeng
dc.contributor.authorTan, Shengdong
dc.contributor.authorHe, Qian
dc.contributor.authorWang, Xun
dc.contributor.authorWang, Lei
dc.date.accessioned2023-05-08T01:51:20Z
dc.date.available2023-05-08T01:51:20Z
dc.date.issued2022-05-25
dc.identifier.citationYang, Haozhou, Zhang, Tianyu, Chi, Xiao, Yu, Xiaojiang, Chen, Junmei, Chen, Jiayi, Li, Chunfeng, Tan, Shengdong, He, Qian, Wang, Xun, Wang, Lei (2022-05-25). Promoting oxygen reduction via coordination environment modulation through secondary metal-atom incorporation. JOURNAL OF MATERIALS CHEMISTRY A 10 (37) : 19626-19634. ScholarBank@NUS Repository. https://doi.org/10.1039/d2ta01962k
dc.identifier.issn2050-7488
dc.identifier.issn2050-7496
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/239233
dc.description.abstractFe-based single-atom catalysts (SACs) have been recognized as attractive candidates for the oxygen reduction reaction (ORR). However, several limitations such as unsatisfactory intrinsic activity and poor stability hinder their practical applications, motivating further optimization of Fe-SACs which requires precise control of their composition and coordination environment. Herein, we establish a facile solvothermal method to incorporate Cu into Fe-SACs to form heterometallic SACs. We observe that the adjacent Cu atoms can regulate the coordination environment of FeN4 sites and significantly enhance the ORR activity. As a result, the heterometallic SACs show superior ORR catalytic performance compared to the mono-Fe-SAC counterpart (an enhancement factor of ∼5 times), delivering a half-wave potential (E1/2) of 0.889 V vs. RHE and a high kinetic current density (jk) of 4.77 mA cm−2 at 0.9 V vs. RHE, and also outperform the state-of-the-art Pt/C catalyst under identical testing conditions.
dc.language.isoen
dc.publisherROYAL SOC CHEMISTRY
dc.sourceElements
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectTechnology
dc.subjectChemistry, Physical
dc.subjectEnergy & Fuels
dc.subjectMaterials Science, Multidisciplinary
dc.subjectChemistry
dc.subjectMaterials Science
dc.subjectN-C CATALYSTS
dc.subjectNONPRECIOUS ELECTROCATALYSTS
dc.subjectCARBON
dc.subjectSITES
dc.subjectORR
dc.subjectELECTROCHEMISTRY
dc.subjectCHALLENGES
dc.subjectGRAPHENE
dc.subjectNITROGEN
dc.subjectCOPPER
dc.typeArticle
dc.date.updated2023-05-06T15:00:13Z
dc.contributor.departmentCHEMICAL & BIOMOLECULAR ENGINEERING
dc.contributor.departmentMATERIALS SCIENCE AND ENGINEERING
dc.contributor.departmentPHYSICS
dc.contributor.departmentSINGAPORE SYNCHROTRON LIGHT SOURCE
dc.description.doi10.1039/d2ta01962k
dc.description.sourcetitleJOURNAL OF MATERIALS CHEMISTRY A
dc.description.volume10
dc.description.issue37
dc.description.page19626-19634
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
Manuscript_20220304_QH10032022.docxSubmitted version1.35 MBMicrosoft Word XML

OPEN

Post-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.