Please use this identifier to cite or link to this item:
https://doi.org/10.1126/science.aan5275
DC Field | Value | |
---|---|---|
dc.title | Size effect in ion transport through angstrom-scale slits | |
dc.contributor.author | Esfandiar, A | |
dc.contributor.author | Radha, B | |
dc.contributor.author | Wang, FC | |
dc.contributor.author | Yang, Q | |
dc.contributor.author | Hu, S | |
dc.contributor.author | Garaj, S | |
dc.contributor.author | Nair, RR | |
dc.contributor.author | Geim, AK | |
dc.contributor.author | Gopinadhan, K | |
dc.date.accessioned | 2023-04-10T02:55:49Z | |
dc.date.available | 2023-04-10T02:55:49Z | |
dc.date.issued | 2017-10-27 | |
dc.identifier.citation | Esfandiar, A, Radha, B, Wang, FC, Yang, Q, Hu, S, Garaj, S, Nair, RR, Geim, AK, Gopinadhan, K (2017-10-27). Size effect in ion transport through angstrom-scale slits. SCIENCE 358 (6362) : 511-513. ScholarBank@NUS Repository. https://doi.org/10.1126/science.aan5275 | |
dc.identifier.issn | 0036-8075 | |
dc.identifier.issn | 1095-9203 | |
dc.identifier.uri | https://scholarbank.nus.edu.sg/handle/10635/238738 | |
dc.description.abstract | In the field of nanofluidics, it has been an ultimate but seemingly distant goal to controllably fabricate capillaries with dimensions approaching the size of small ions and water molecules. We report ion transport through ultimately narrow slits that are fabricated by effectively removing a single atomic plane from a bulk crystal. The atomically flat angstrom-scale slits exhibit little surface charge, allowing elucidation of the role of steric effects. We find that ions with hydrated diameters larger than the slit size can still permeate through, albeit with reduced mobility. The confinement also leads to a notable asymmetry between anions and cations of the same diameter. Our results provide a platform for studying the effects of angstrom-scale confinement, which is important for the development of nanofluidics, molecular separation, and other nanoscale technologies. | |
dc.language.iso | en | |
dc.publisher | AMER ASSOC ADVANCEMENT SCIENCE | |
dc.source | Elements | |
dc.subject | Science & Technology | |
dc.subject | Multidisciplinary Sciences | |
dc.subject | Science & Technology - Other Topics | |
dc.subject | FREE-ENERGY | |
dc.subject | GRAPHENE | |
dc.subject | HYDRATION | |
dc.subject | SELECTIVITY | |
dc.type | Article | |
dc.date.updated | 2023-04-08T09:57:57Z | |
dc.contributor.department | PHYSICS | |
dc.description.doi | 10.1126/science.aan5275 | |
dc.description.sourcetitle | SCIENCE | |
dc.description.volume | 358 | |
dc.description.issue | 6362 | |
dc.description.page | 511-513 | |
dc.published.state | Published | |
Appears in Collections: | Staff Publications Elements |
Show simple item record
Files in This Item:
File | Description | Size | Format | Access Settings | Version | |
---|---|---|---|---|---|---|
Esfandiar et al. 2017 - Science - Size effect in ion transport through angstrom-scale slits.pdf | 324.54 kB | Adobe PDF | CLOSED | Published |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.