Please use this identifier to cite or link to this item: https://doi.org/10.1016/j.nano.2019.02.024
DC FieldValue
dc.titleSurface protein engineering increases the circulation time of a cell membrane-based nanotherapeutic
dc.contributor.authorKrishnamurthy, Sangeetha
dc.contributor.authorMuthukumaran, Padmalosini
dc.contributor.authorJayakumar, Muthu Kumara Gnanasammandhan
dc.contributor.authorLisse, Domenik
dc.contributor.authorMasurkar, Nihar D
dc.contributor.authorXu, Chenjie
dc.contributor.authorChan, Juliana M
dc.contributor.authorDrum, Chester L
dc.date.accessioned2022-11-18T03:20:14Z
dc.date.available2022-11-18T03:20:14Z
dc.date.issued2019-06-01
dc.identifier.citationKrishnamurthy, Sangeetha, Muthukumaran, Padmalosini, Jayakumar, Muthu Kumara Gnanasammandhan, Lisse, Domenik, Masurkar, Nihar D, Xu, Chenjie, Chan, Juliana M, Drum, Chester L (2019-06-01). Surface protein engineering increases the circulation time of a cell membrane-based nanotherapeutic. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 18 : 169-178. ScholarBank@NUS Repository. https://doi.org/10.1016/j.nano.2019.02.024
dc.identifier.issn15499634
dc.identifier.issn15499642
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/234694
dc.description.abstractMammalian cell membranes are often incompatible with chemical modifications typically used to increase circulation half-life. Using cellular nanoghosts as a model, we show that proline-alanine-serine (PAS) peptide sequences expressed on the membrane surface can extend the circulation time of a cell membrane derived nanotherapeutic. Membrane expression of a PAS 40 repeat sequence decreased protein binding and resulted in a 90% decrease in macrophage uptake when compared with non-PASylated controls (P ≤ 0.05). PASylation also extended circulation half-life (t 1/2 = 37 h) compared with non-PASylated controls (t 1/2 = 10.5 h) (P ≤ 0.005), resulting in ~7-fold higher in vivo serum concentrations at 24 h and 48 h (P ≤ 0.005). Genetically engineered membrane expression of PAS repeats may offer an alternative to PEGylation and provide extended circulation times for cellular membrane-derived nanotherapeutics.
dc.language.isoen
dc.publisherELSEVIER SCIENCE BV
dc.sourceElements
dc.subjectScience & Technology
dc.subjectLife Sciences & Biomedicine
dc.subjectNanoscience & Nanotechnology
dc.subjectMedicine, Research & Experimental
dc.subjectScience & Technology - Other Topics
dc.subjectResearch & Experimental Medicine
dc.subjectPASylation
dc.subjectNanoghosts
dc.subjectCell ghosts
dc.subjectLipid polymer hybrid nanoparticles
dc.subjectSynthetic biology
dc.subjectDrug delivery
dc.subjectNanomedicine
dc.subjectPLASMA HALF-LIFE
dc.subjectPOLYETHYLENE-GLYCOL
dc.subjectPROSTATE-CANCER
dc.subjectNANOPARTICLES
dc.subjectDELIVERY
dc.subjectPEGYLATION
dc.subjectTHERAPY
dc.subjectPASYLATION
dc.subjectCARRIER
dc.typeArticle
dc.date.updated2022-11-18T02:34:48Z
dc.contributor.departmentBIOMEDICAL ENGINEERING
dc.contributor.departmentSURGERY
dc.contributor.departmentMEDICINE
dc.description.doi10.1016/j.nano.2019.02.024
dc.description.sourcetitleNANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE
dc.description.volume18
dc.description.page169-178
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
1-s2.0-S1549963419300577-main.pdf1.96 MBAdobe PDF

CLOSED

Published

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.