Please use this identifier to cite or link to this item: https://doi.org/10.1515/crelle-2015-0013
DC FieldValue
dc.titlePositivity criteria for log canonical divisors and hyperbolicity
dc.contributor.authorLu, Steven SY
dc.contributor.authorZhang, De-Qi
dc.date.accessioned2022-11-17T05:04:04Z
dc.date.available2022-11-17T05:04:04Z
dc.date.issued2017-05-01
dc.identifier.citationLu, Steven SY, Zhang, De-Qi (2017-05-01). Positivity criteria for log canonical divisors and hyperbolicity. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK 726 (726) : 173-186. ScholarBank@NUS Repository. https://doi.org/10.1515/crelle-2015-0013
dc.identifier.issn0075-4102
dc.identifier.issn1435-5345
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/234658
dc.description.abstractLet X be a complex projective variety and D a reduced divisor on X. Under mild conditions on the singularities of (X, D), which includes the case of smooth X with simple normal crossing D, and by running the minimal model program, we obtain by induction on dimension via adjunction geometric criteria guaranteeing various positivity conditions for KX + D. Our geometric criterion for KX + D to be numerically effective yields also a geometric version of the cone theorem and a criterion for KX + D to be pseudo-effective with mild hypothesis on D. We also obtain, assuming the abundance conjecture and the existence of rational curves on Calabi-Yau manifolds, an optimal geometric sharpening of the Nakai-Moishezon criterion for the ampleness of a divisor of the form KX + D, a criterion verified under a canonical hyperbolicity assumption on (X, D). Without these conjectures, we verify this ampleness criterion with mild assumptions on D, being none in dimension two and D ≠ 0 in dimension three.
dc.language.isoen
dc.publisherWALTER DE GRUYTER GMBH
dc.sourceElements
dc.subjectScience & Technology
dc.subjectPhysical Sciences
dc.subjectMathematics
dc.subjectVARIETIES
dc.typeArticle
dc.date.updated2022-11-16T08:16:49Z
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1515/crelle-2015-0013
dc.description.sourcetitleJOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK
dc.description.volume726
dc.description.issue726
dc.description.page173-186
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
1207.7346v4.pdf264.87 kBAdobe PDF

OPEN

Pre-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.