Please use this identifier to cite or link to this item: https://doi.org/10.1093/imrn/rnab039
DC FieldValue
dc.titleInvariant Subvarieties With Small Dynamical Degree
dc.contributor.authorMatsuzawa, Y
dc.contributor.authorMeng, S
dc.contributor.authorShibata, T
dc.contributor.authorZhang, DQ
dc.contributor.authorZhong, G
dc.date.accessioned2022-11-16T08:25:42Z
dc.date.available2022-11-16T08:25:42Z
dc.date.issued2022-07-01
dc.identifier.citationMatsuzawa, Y, Meng, S, Shibata, T, Zhang, DQ, Zhong, G (2022-07-01). Invariant Subvarieties With Small Dynamical Degree. International Mathematics Research Notices 2022 (15) : 11448-11483. ScholarBank@NUS Repository. https://doi.org/10.1093/imrn/rnab039
dc.identifier.issn1073-7928
dc.identifier.issn1687-0247
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/234618
dc.description.abstractLet f : X → X be a dominant self-morphism of an algebraic variety. Consider the set ∑f8 of f -periodic subvarieties of small dynamical degree (SDD), the subset Sf8 of maximal elements in ∑f8, and the subset Sf of f -invariant elements in Sf8. When X is projective, we prove the finiteness of the set Pf of f -invariant prime divisors with SDD and give an optimal upper bound Pf n = d1(f )n(1 + o(1)) as n→8, where d1(f ) is the 1st dynamic degree. When X is an algebraic group (with f being a translation of an isogeny), or a (not necessarily complete) toric variety, we give an optimal upper bound Sf n = d1(f )n dim(X)(1 + o(1)) as n→8, which slightly generalizes a conjecture of S.-W. Zhang for polarized f .
dc.publisherOxford University Press (OUP)
dc.sourceElements
dc.subjectmath.AG
dc.subjectmath.AG
dc.subjectmath.DS
dc.subjectmath.NT
dc.subject14J50, 08A35, 32H50, 37B40, 11G10, 14M25
dc.typeArticle
dc.date.updated2022-11-16T08:10:48Z
dc.contributor.departmentMATHEMATICS
dc.description.doi10.1093/imrn/rnab039
dc.description.sourcetitleInternational Mathematics Research Notices
dc.description.volume2022
dc.description.issue15
dc.description.page11448-11483
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
2005.13368v2.pdf377.7 kBAdobe PDF

OPEN

Pre-printView/Download

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.