Please use this identifier to cite or link to this item: https://doi.org/10.1021/acsmaterialslett.1c00055
DC FieldValue
dc.titleMechanochemical Synthesis and Structure of Lithium Tetrahaloaluminates, LiAlX4(X = Cl, Br, I): A Family of Li-Ion Conducting Ternary Halides
dc.contributor.authorFlores-González, N.
dc.contributor.authorMinafra, Nicolo
dc.contributor.authorDewald, Georg
dc.contributor.authorReardon, Hazel
dc.contributor.authorSmith, Ronald, I
dc.contributor.authorAdams, Stefan
dc.contributor.authorZeier, Wolfgang G.
dc.contributor.authorGregory, Duncan H.
dc.date.accessioned2022-10-26T09:20:39Z
dc.date.available2022-10-26T09:20:39Z
dc.date.issued2021-04-20
dc.identifier.citationFlores-González, N., Minafra, Nicolo, Dewald, Georg, Reardon, Hazel, Smith, Ronald, I, Adams, Stefan, Zeier, Wolfgang G., Gregory, Duncan H. (2021-04-20). Mechanochemical Synthesis and Structure of Lithium Tetrahaloaluminates, LiAlX4(X = Cl, Br, I): A Family of Li-Ion Conducting Ternary Halides. ACS Materials Letters 3 (5) : 652-657. ScholarBank@NUS Repository. https://doi.org/10.1021/acsmaterialslett.1c00055
dc.identifier.issn2639-4979
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/233856
dc.description.abstractState-of-the-art oxides and sulfides with high Li-ion conductivity and good electrochemical stability are among the most promising candidates for solid-state electrolytes in secondary batteries. Yet emerging halides offer promising alternatives because of their intrinsic low Li+ migration energy barriers, high electrochemical oxidative stability, and beneficial mechanical properties. Mechanochemical synthesis has enabled the characterization of LiAlX4 compounds to be extended and the iodide, LiAlI4, to be synthesized for the first time (monoclinic P21/c, Z = 4; a = 8.0846(1) Å b = 7.4369(1) Å c = 14.8890(2) Å ? = 93.0457(8)°). Of the tetrahaloaluminates, LiAlBr4 exhibited the highest ionic conductivity at room temperature (0.033 mS cm-1), while LiAlCl4 showed a conductivity of 0.17 mS cm-1 at 333 K, coupled with the highest thermal and oxidative stability. Modeling of the diffusion pathways suggests that the Li-ion transport mechanism in each tetrahaloaluminate is closely related and mediated by both halide polarizability and concerted complex anion motions. © 2021 The Authors. Published by American Chemical Society.
dc.publisherAmerican Chemical Society
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.typeArticle
dc.contributor.departmentCOLLEGE OF DESIGN AND ENGINEERING
dc.description.doi10.1021/acsmaterialslett.1c00055
dc.description.sourcetitleACS Materials Letters
dc.description.volume3
dc.description.issue5
dc.description.page652-657
dc.published.statePublished
Appears in Collections:Staff Publications
Elements

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1021_acsmaterialslett_1c00055.pdf2.85 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons