Please use this identifier to cite or link to this item: https://doi.org/10.1002/advs.202002065
DC FieldValue
dc.titleSurface Doping of Organic Single-Crystal Semiconductors to Produce Strain-Sensitive Conductive Nanosheets
dc.contributor.authorWatanabe, Shun
dc.contributor.authorHakamatani, Ryohei
dc.contributor.authorYaegashi, Keita
dc.contributor.authorYamashita, Yu
dc.contributor.authorNozawa, Han
dc.contributor.authorSasaki, Mari
dc.contributor.authorKumagai, Shohei
dc.contributor.authorOkamoto, Toshihiro
dc.contributor.authorTang, Cindy G.
dc.contributor.authorChua, Lay-Lay
dc.contributor.authorHo, Peter K. H.
dc.contributor.authorTakeya, Jun
dc.date.accessioned2022-10-26T09:17:53Z
dc.date.available2022-10-26T09:17:53Z
dc.date.issued2020-12-18
dc.identifier.citationWatanabe, Shun, Hakamatani, Ryohei, Yaegashi, Keita, Yamashita, Yu, Nozawa, Han, Sasaki, Mari, Kumagai, Shohei, Okamoto, Toshihiro, Tang, Cindy G., Chua, Lay-Lay, Ho, Peter K. H., Takeya, Jun (2020-12-18). Surface Doping of Organic Single-Crystal Semiconductors to Produce Strain-Sensitive Conductive Nanosheets. Advanced Science 8 (3) : 2002065. ScholarBank@NUS Repository. https://doi.org/10.1002/advs.202002065
dc.identifier.issn2198-3844
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/233815
dc.description.abstractA highly periodic electrostatic potential, even though established in van der Waals bonded organic crystals, is essential for the realization of a coherent band electron system. While impurity doping is an effective chemical operation that can precisely tune the energy of an electronic system, it always faces an unavoidable difficulty in molecular crystals because the introduction of a relatively high density of dopants inevitably destroys the highly ordered molecular framework. In striking contrast, a versatile strategy is presented to create coherent 2D electronic carriers at the surface of organic semiconductor crystals with their precise molecular structures preserved perfectly. The formation of an assembly of redox-active molecular dopants via a simple one-shot solution process on a molecularly flat crystalline surface allows efficient chemical doping and results in a relatively high carrier density of 1013 cm?2 at room temperature. Structural and magnetotransport analyses comprehensively reveal that excellent carrier transport and piezoresistive effects can be obtained that are similar to those in bulk crystals. © 2020 The Authors. Advanced Science published by Wiley-VCH GmbH
dc.publisherJohn Wiley and Sons Inc
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.subject2D electronic system
dc.subjectmolecular doping
dc.subjectorganic semiconductors
dc.subjectpiezoresistive effect
dc.subjectsingle crystals
dc.typeArticle
dc.contributor.departmentCHEMISTRY
dc.contributor.departmentPHYSICS
dc.description.doi10.1002/advs.202002065
dc.description.sourcetitleAdvanced Science
dc.description.volume8
dc.description.issue3
dc.description.page2002065
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1002_advs_202002065.pdf1.91 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons