Please use this identifier to cite or link to this item: https://doi.org/10.1038/s41377-021-00478-w
DC FieldValue
dc.titleSpontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities
dc.contributor.authorWang, Jun
dc.contributor.authorXu, Huawen
dc.contributor.authorSu, Rui
dc.contributor.authorPeng, Yutian
dc.contributor.authorWu, Jinqi
dc.contributor.authorLiew, Timothy C. H.
dc.contributor.authorXiong, Qihua
dc.date.accessioned2022-10-26T09:04:46Z
dc.date.available2022-10-26T09:04:46Z
dc.date.issued2021-03-01
dc.identifier.citationWang, Jun, Xu, Huawen, Su, Rui, Peng, Yutian, Wu, Jinqi, Liew, Timothy C. H., Xiong, Qihua (2021-03-01). Spontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities. Light: Science and Applications 10 (1) : 45. ScholarBank@NUS Repository. https://doi.org/10.1038/s41377-021-00478-w
dc.identifier.issn2095-5545
dc.identifier.urihttps://scholarbank.nus.edu.sg/handle/10635/233596
dc.description.abstractExciton-polariton condensation is regarded as a spontaneous macroscopic quantum phenomenon with phase ordering and collective coherence. By engineering artificial annular potential landscapes in halide perovskite semiconductor microcavities, we experimentally and theoretically demonstrate the room-temperature spontaneous formation of a coherent superposition of exciton-polariton orbital states with symmetric petal-shaped patterns in real space, resulting from symmetry breaking due to the anisotropic effective potential of the birefringent perovskite crystals. The lobe numbers of such petal-shaped polariton condensates can be precisely controlled by tuning the annular potential geometry. These petal-shaped condensates form in multiple orbital states, carrying locked alternating ? phase shifts and vortex–antivortex superposition cores, arising from the coupling of counterrotating exciton-polaritons in the confined circular waveguide. Our geometrically patterned microcavity exhibits promise for realizing room-temperature topological polaritonic devices and optical polaritonic switches based on periodic annular potentials. © 2021, The Author(s).
dc.publisherSpringer Nature
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceScopus OA2021
dc.typeArticle
dc.contributor.departmentCENTRE FOR QUANTUM TECHNOLOGIES
dc.description.doi10.1038/s41377-021-00478-w
dc.description.sourcetitleLight: Science and Applications
dc.description.volume10
dc.description.issue1
dc.description.page45
dc.published.statePublished
Appears in Collections:Elements
Staff Publications

Show simple item record
Files in This Item:
File Description SizeFormatAccess SettingsVersion 
10_1038_s41377-021-00478-w.pdf1.09 MBAdobe PDF

OPEN

NoneView/Download

Google ScholarTM

Check

Altmetric


This item is licensed under a Creative Commons License Creative Commons